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Abstract
This paper presents a recursive reasoning for-
malism of Bayesian optimization (BO) to model
the reasoning process in the interactions between
boundedly rational, self-interested agents with
unknown, complex, and costly-to-evaluate pay-
off functions in repeated games, which we call
Recursive Reasoning-Based BO (R2-B2). Our
R2-B2 algorithm is general in that it does not con-
strain the relationship among the payoff functions
of different agents and can thus be applied to vari-
ous types of games such as constant-sum, general-
sum, and common-payoff games. We prove that
by reasoning at level 2 or more and at one level
higher than the other agents, our R2-B2 agent
can achieve faster asymptotic convergence to no
regret than that without utilizing recursive reason-
ing. We also propose a computationally cheaper
variant of R2-B2 called R2-B2-Lite at the expense
of a weaker convergence guarantee. The perfor-
mance and generality of our R2-B2 algorithm are
empirically demonstrated using synthetic games,
adversarial machine learning, and multi-agent re-
inforcement learning.

1. Introduction
Several fundamental machine learning tasks in the real
world involve intricate interactions between boundedly ra-
tional1, self-interested agents that can be modeled as a form
of repeated games with unknown, complex, and costly-to-
evaluate payoff functions for the agents. For example, in
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1Boundedly rational agents are subject to limited cognition and
time in making decisions (Gigerenzer & Selten, 2002).

adversarial machine learning (ML), the interactions between
the defender D and the attacker A of an ML model can be
modeled as a repeated game in which the payoffs to D and
A are the performance of the ML model (e.g., validation ac-
curacy) and its negation, respectively. Specifically, given a
fully trained image classification model (say, provided as an
online service), A attempts to fool the ML model into mis-
classification through repeated queries of the model using
perturbed input images. On the other hand, for each queried
image that is perturbed by A, D tries to ensure the cor-
rectness of its classification by transforming the perturbed
image before feeding it into the ML model. As another
example, multi-agent reinforcement learning (MARL) in
an episodic environment can also be modeled as a repeated
game in which the payoff to each agent is its return from
the execution of all the agents’ selected policies.

Solving such a form of repeated games in a cost-efficient
manner is challenging since the payoff functions of the
agents are unknown, complex (e.g., possibly noisy, non-
convex, and/or with no closed-form expression/derivative),
and costly to evaluate. Fortunately, the payoffs correspond-
ing to different actions of each agent tend to be correlated.
For example, in adversarial ML, the correlated perturbations
performed by the attackerA (and correlated transformations
executed by the defender D) are likely to induce similar
effects on the performance of the ML model. Such a cor-
relation can be leveraged to predict the payoff associated
with any action of an agent using a surrogate model such
as the rich class of Bayesian nonparametric Gaussian pro-
cess (GP) models (Rasmussen & Williams, 2006) which is
expressive enough to represent a predictive belief of the un-
known, complex payoff function over the action space of the
agent. Then, in each iteration, the agent can select an action
for evaluating its unknown payoff function that trades off be-
tween sampling at or near to a likely maximum payoff based
on the current GP belief (exploitation) vs. improving the
GP belief (exploration) until its cost/sampling budget is ex-
pended. To do this, the agent can use a sequential black-box
optimizer such as the celebrated Bayesian optimization (BO)
algorithm (Shahriari et al., 2016) based on the GP-upper
confidence bound (GP-UCB) acquisition function (Srinivas
et al., 2010), which guarantees asymptotic no-regret perfor-
mance and is sample-efficient in practice. How then can
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we design a BO algorithm to account for its interactions
with boundedly rational1, self-interested agents and still
guarantee the trademark asymptotic no-regret performance?

Inspired by the cognitive hierarchy model of
games (Camerer et al., 2004), we adopt a recursive
reasoning formalism (i.e., typical among humans) to model
the reasoning process in the interactions between boundedly
rational1, self-interested agents. It comprises k levels of
reasoning which represents the cognitive limit of the agent.
At level k = 0 of reasoning, the agent randomizes its choice
of actions. At a higher level k ≥ 1 of reasoning, the agent
selects its best response to the actions of the other agents
who are reasoning at lower levels 0, 1, . . . , k − 1.

This paper presents the first recursive reasoning formalism
of BO to model the reasoning process in the interactions
between boundedly rational1, self-interested agents with un-
known, complex, and costly-to-evaluate payoff functions in
repeated games, which we call Recursive Reasoning-Based
BO (R2-B2) (Section 3). R2-B2 provides these agents with
principled strategies for performing effectively in this type
of game. In this paper, we consider repeated games with
simultaneous moves and perfect monitoring2. Our R2-B2
algorithm is general in that it does not constrain the relation-
ship among the payoff functions of different agents and can
thus be applied to various types of games such as constant-
sum games (e.g., adversarial ML in which the attackerA and
defender D have opposing objectives), general-sum games
(e.g., MARL where all agents have possibly different yet not
necessarily conflicting goals), and common-payoff games
(i.e., all agents have identical payoff functions). We prove
that by reasoning at level k ≥ 2 and one level higher than the
other agents, our R2-B2 agent can achieve faster asymptotic
convergence to no regret than that without utilizing recur-
sive reasoning (Section 3.1.3). We also propose a computa-
tionally cheaper variant of R2-B2 called R2-B2-Lite at the
expense of a weaker convergence guarantee (Section 3.2).
The performance and generality of R2-B2 are demonstrated
through extensive experiments using synthetic games, ad-
versarial ML, and MARL (Section 4). Interestingly, we
empirically show that by reasoning at a higher level, our
R2-B2 defender is able to effectively defend against the
attacks from the state-of-the-art black-box adversarial at-
tackers (Section 4.2.2), which can be of independent interest
to the adversarial ML community.

2In each iteration of a repeated game with (a) simultane-
ous moves and (b) perfect monitoring, every agent, respectively,
(a) chooses its action simultaneously without knowing the other
agents’ selected actions, and (b) has access to the entire history
of game plays, which includes all actions selected and payoffs
observed by every agent in the previous iterations.

2. Background and Problem Formulation
For simplicity, we will mostly focus on repeated games be-
tween two agents, but have extended our R2-B2 algorithm
to games involving more than two agents, as detailed in
Appendix B. To ease exposition, throughout this paper, we
will use adversarial ML as the running example and thus
refer to the two agents as the attacker A and the defender D.
For example, the input action space X1 ⊂ Rd1 of A can be
a set of allowed perturbations of a test image while the input
action space X2 ⊂ Rd2 of D can represent a set of feasible
transformations of the perturbed test image. We consider
both input domains X1 and X2 to be discrete for simplicity;
generalization of our theoretical results in Section 3 to con-
tinuous, compact domains can be easily achieved through a
suitable discretization of the domains (Srinivas et al., 2010).
When the ML model is an image classification model, the
payoff function f1 : X1 ×X2 → R of A, which takes in its
perturbation x1 ∈ X1 and D’s transformation x2 ∈ X2 as
inputs, can be the maximum predictive probability among
all incorrect classes for a test image sinceA intends to cause
misclassification. Since A and D have opposing objectives
(i.e.,D intends to prevent misclassification), the payoff func-
tion f2 : X1 ×X2 → R of D can be the negation of that of
A, thus resulting in a constant-sum game between A and D.

In each iteration t = 1, . . . , T of the repeated game with
simultaneous moves and perfect monitoring23, A and D
select their respective input actions x1,t and x2,t simultane-
ously using our R2-B2 algorithm (Section 3) for evaluating
their payoff functions f1 and f2. Then, A and D receive the
respective noisy observed payoffs y1,t , f1(x1,t,x2,t) + ε1
and y2,t , f2(x1,t,x2,t) + ε2 with i.i.d. Gaussian noises
εi ∼ N (0, σ2

i ) and noise variances σ2
i for i = 1, 2.

A common practice in game theory is to measure the perfor-
mance of A via its (external) regret (Nisan et al., 2007):

R1,T ,
∑T
t=1[f1(x∗1,x2,t)− f1(x1,t,x2,t)] (1)

where x∗1 , arg maxx1∈X1

∑T
t=1 f1(x1,x2,t). The exter-

nal regret R2,T of D is defined in a similar manner. An
algorithm is said to achieve asymptotic no regret if R1,T

grows sub-linearly in T , i.e., limT→∞R1,T /T = 0. Intu-
itively, by following a no-regret algorithm, A is guaranteed
to eventually find its optimal input action x∗1 in hindsight,
regardless of D’s sequence of input actions.

To guarantee no regret (Section 3),A represents a predictive
belief of its unknown, complex payoff function f1 using the
rich class of Gaussian process (GP) models by modeling
f1 as a sample of a GP (Rasmussen & Williams, 2006). D
does likewise with its unknown f2. Interested readers are

3Note that in some tasks such as adversarial ML, the require-
ment of perfect monitoring can be relaxed considerably. Refer to
Section 4.2.2 for more details.
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referred to Appendix A.1 for a detailed background on GP.
In particular, A uses the GP predictive/posterior belief of f1
to compute a probabilistic upper bound of f1 called the GP-
upper confidence bound (GP-UCB) (Srinivas et al., 2010)
at any joint input actions (x1,x2), which will be exploited
by our R2-B2 algorithm (Section 3):

α1,t(x1,x2) , µt−1(x1,x2) + β
1/2
t σt−1(x1,x2) (2)

for iteration t where µt−1(x1,x2) and σ2
t−1(x1,x2) denote,

respectively, the GP posterior mean and variance at (x1,x2)
(Appendix A.1) conditioned on the history of game plays
up till iteration t− 1 that includesA’s observed payoffs and
the actions selected by both agents in iterations 1, . . . , t− 1.
The GP-UCB acquisition function α2,t for D is defined like-
wise. Supposing A knows the input action x2,t selected by
D and chooses an input action x1 to maximize the GP-UCB
acquisition function α1,t (2), its choice involves trading off
between sampling close to an expected maximum payoff
(i.e., with large GP posterior mean) given the current GP
belief of f1 (exploitation) vs. that of high predictive uncer-
tainty (i.e., with large GP posterior variance) to improve the
GP belief of f1 (exploration) where the parameter βt is set to
trade off between exploitation vs. exploration for bounding
its external regret (1), as specified later in Theorem 1.

3. Recursive Reasoning-Based Bayesian
Optimization (R2-B2)

Algorithm 1 describes the R2-B2 algorithm from the per-
spective of attacker A which we will adopt in this section.
Our R2-B2 algorithm for defender D can be derived analo-
gously. We will now discuss the recursive reasoning formal-
ism of BO for A’s action selection in step 2 of Algorithm 1.

3.1. Recursive Reasoning Formalism of BO

Our recursive reasoning formalism of BO follows a similar
principle as the cognitive hierarchy model (Camerer et al.,
2004): At level k = 0 of reasoning, A adopts some random-
ized/mixed strategy of selecting its action. At level k ≥ 1
of reasoning, A best-responds to the strategy of D who is
reasoning at a lower level. Let xk1,t denote the input action
x1,t selected by A’s strategy from reasoning at level k in
iteration t. Depending on the (a) degree of knowledge about
D and (b) available computational resource, A can choose
one of the following three types of strategies of selecting its
action with varying levels of reasoning, as shown in Fig. 1:

Level-k = 0 Strategy. Without knowledge of D’s level of
reasoning nor its level-0 strategy, A by default can reason at
level 0 and play a mixed strategy P0

1,t of selecting its action
by sampling x0

1,t from the probability distribution P0
1,t over

its input action space X1, as discussed in Section 3.1.1.

Algorithm 1 R2-B2 for attacker A’s level-k reasoning
1: for t = 1, 2, . . . , T do
2: Select input action x1,t using its level-k strategy

(while defender D selects input action x2,t)
3: Observe noisy payoff y1,t = f1(x1,t,x2,t) + ε1
4: Update GP posterior belief using 〈(x1,t,x2,t), y1,t〉

Mixed Strategy

…
…

Attacker Defender

(a) Level 0

best-responds

Mixed Strategy

…
…

Attacker Defender

(b) Level 1

best-responds

Mixed Strategy

…
…

Attacker Defender

(c) Level 2

Figure 1. Illustration of attackerA’s strategies of selecting its input
action from reasoning at levels k = 0, 1, and 2.

Level-k = 1 Strategy. If A thinks that D reasons at level
0 and has knowledge of D’s level-0 mixed strategy P0

2,t,
then A can reason at level 1 and play a pure strategy that
best-responds to the level-0 strategy of D, as explained in
Section 3.1.2. Such a level-1 reasoning of A is general
since it caters to any level-0 strategy of D and hence does
not require D to perform recursive reasoning.

Level-k ≥ 2 Strategy. If A thinks that D reasons at level
k − 1, then A can reason at level k and play a pure strategy
that best-responds to D’s level-(k− 1) action, as detailed in
Section 3.1.3. Different from the level-1 reasoning of A, its
level-k reasoning assumes that D’s level-(k − 1) action is
derived using the same recursive reasoning process.

3.1.1. LEVEL-k = 0 STRATEGY

Level 0 is a conservative, default choice for A since it does
not require any knowledge about D’s strategy of selecting
its input action and is computationally lightweight. At level
0, A plays a mixed strategy P0

1,t by sampling x0
1,t from the

probability distribution P0
1,t over its input action space X1:

x0
1,t ∼ P0

1,t. A mixed/randomized strategy (instead of a
pure/deterministic strategy) is considered because without
knowledge of D’s strategy, A has to treat D as a black-box
adversary. This setting corresponds to that of an adversarial
bandit problem in which any deterministic strategy suf-
fers from linear worst-case regret (Lattimore & Szepesvári,
2020) and randomization alleviates this issue. Such a ran-
domized design of our level-0 strategies is consistent with
that of the cognitive hierarchy model in which a level-0
thinker does not make any assumption about the other agent
and selects its action via a probability distribution without
using strategic thinking (Camerer et al., 2004). We will now
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present a few reasonable choices of level-0 mixed strategies.
However, in both theory (Theorems 2, 3 and 4) and practice,
any strategy of action selection (including existing methods
(Section 4.2.2)) can be considered as a level-0 strategy.

In the simplest setting where A has no knowledge of D’s
strategy, a natural choice for its level-0 mixed strategy is
random search. That is, A samples its action from a uni-
form distribution over X1. An alternative choice is to use
the EXP3 algorithm for the adversarial linear bandit prob-
lem, which requires the GP to be transformed via a ran-
dom features approximation (Rahimi & Recht, 2007) into
linear regression with random features as inputs. Since
the regret of EXP3 algorithm is bounded from above by
O(
√
d′1T log |X1|) (Lattimore & Szepesvári, 2020) where

d′1 denotes the number of random features, it incurs sub-
linear regret and can thus achieve asymptotic no regret.

In a more relaxed setting where A has access to the his-
tory of actions selected by D, A can use the GP-MW algo-
rithm (Sessa et al., 2019) to derive its level-0 mixed strat-
egy; for completeness, GP-MW is briefly described in Ap-
pendix A.2. The result below bounds the regret of A when
using GP-MW for level-0 reasoning and its proof is slightly
modified from that of Sessa et al. (2019) to account for its
payoff function f1 being sampled from a GP (Section 2):

Theorem 1. Let δ ∈ (0, 1), βt , 2 log(|X1|t2π2/(3δ)),
and γT denotes the maximum information gain about payoff
function f1 from any history of actions selected by both
agents and corresponding noisy payoffs observed by A up
till iteration T . Suppose that A uses GP-MW to derive its
level-0 strategy. Then, with probability of at least 1− δ,

R1,T = O(
√
T log |X1|+

√
T log(2/δ) +

√
TβT γT ) .

From Theorem 1, R1,T is sub-linear in T .4 So, A using GP-
MW for level-0 reasoning achieves asymptotic no regret.

3.1.2. LEVEL-k = 1 STRATEGY

If A thinks that D reasons at level 0 and has knowledge
of D’s level-0 strategy P0

2,t, then A can reason at level 1.
Specifically, A selects its level-1 action x1

1,t that maximizes
the expected value of GP-UCB (2) w.r.t.D’s level-0 strategy:

x1
1,t , arg maxx1∈X1

Ex0
2,t∼P0

2,t
[α1,t(x1,x

0
2,t)] . (3)

If input action space X2 of D is discrete and not too large,
then (3) can be solved exactly. Otherwise, (3) can be solved
approximately via sampling from P0

2,t. Such a level-1 rea-
soning of A to solve (3) only requires access to the history

4The asymptotic growth of γT has been analyzed for some
commonly used kernels: γT = O((log T )d1+1) for squared expo-
nential kernel and γT = O(T d1(d1+1)/(2ν+d1(d1+1)) log T ) for
Matérn kernel with parameter ν > 1. For both kernels, the last
term in the regret bound in Theorem 1 grows sub-linearly in T .

of actions selected by D but not its observed payoffs, which
is the same as that needed by GP-MW. Our first main result
(see its proof in Appendix C) bounds the expected regret of
A when using R2-B2 for level-1 reasoning:

Theorem 2. Let δ ∈ (0, 1) andC1 , 8/ log(1+σ−21 ). Sup-
pose that A uses R2-B2 (Algorithm 1) for level-1 reasoning
and D uses mixed strategy P0

2,t for level-0 reasoning. Then,
with probability of at least 1− δ, E[R1,T ] ≤

√
C1TβT γT

where the expectation is with respect to the history of actions
selected and payoffs observed by D.

It follows from Theorem 2 that E[R1,T ] is sublinear in T .4

So, A using R2-B2 for level-1 reasoning achieves asymp-
totic no expected regret, which holds for any level-0 strategy
of D regardless of whether D performs recursive reasoning.

3.1.3. LEVEL-k ≥ 2 STRATEGY

If A thinks that D reasons at level 1, then A can reason at
level 2 and select its level-2 action x2

1,t (4) to best-respond
to level-1 action x1

2,t (5) selected by D, the latter of which
can be computed/simulated by A in a similar manner as (3):

x2
1,t , arg maxx1∈X1

α1,t(x1,x
1
2,t) , (4)

x1
2,t , arg maxx2∈X2

Ex0
1,t∼P0

1,t
[α2,t(x

0
1,t,x2)] . (5)

In the general case, if A thinks that D reasons at level
k − 1 ≥ 2, then A can reason at level k ≥ 3 and select its
level-k action xk1,t (6) that best-responds to level-(k − 1)

action xk−12,t (7) selected by D:

xk1,t , arg maxx1∈X1
α1,t(x1,x

k−1
2,t ) , (6)

xk−12,t , arg maxx2∈X2
α2,t(x

k−2
1,t ,x2) . (7)

Since A thinks that D’s level-(k − 1) action xk−12,t (7) is
derived using the same recursive reasoning process, xk−12,t

best-responds to level-(k−2) action xk−21,t selected byA, the
latter of which in turn best-responds to level-(k − 3) action
xk−32,t selected by D and can be computed in the same way
as (6). This recursive reasoning process continues until it
reaches the base case of the level-1 action selected by either
(a) A (3) if k is odd (in this case, recall from Section 3.1.2
that A requires knowledge of D’s level-0 strategy P0

2,t to
compute (3)), or (b) D (5) if k is even. Note that A has to
perform the computations made by D to derive xk−12,t (7) as
well as the computations to best-respond to xk−12,t via (6).
Our next main result (see its proof in Appendix C) bounds
the regret ofAwhen using R2-B2 for level-k ≥ 2 reasoning:

Theorem 3. Let δ ∈ (0, 1). Suppose that A and D use
R2-B2 (Algorithm 1) for level-k ≥ 2 and level-(k − 1)
reasoning, respectively. Then, with probability of at least
1− δ, R1,T ≤

√
C1TβT γT .



R2-B2: Recursive Reasoning-Based Bayesian Optimization for No-Regret Learning in Games

Theorem 3 reveals that R1,T grows sublinearly in T .4 So,
A using R2-B2 for level-k ≥ 2 reasoning achieves asymp-
totic no regret regardless of D’s level-0 strategy P0

2,t. By
comparing Theorems 1 and 3, we can observe that if A uses
GP-MW as its level-0 strategy, then it can achieve faster
asymptotic convergence to no regret by using R2-B2 to rea-
son at level k ≥ 2 and one level higher than D. However,
when A reasons at a higher level k, its computational cost
grows due to an additional optimization of the GP-UCB ac-
quisition function per increase in level of reasoning. So, A
is expected to favor reasoning at a lower level, which agrees
with the observation in the work of Camerer et al. (2004) on
the cognitive hierarchy model that humans usually reason at
a level no higher than 2.

3.2. R2-B2-Lite

We also propose a computationally cheaper variant of R2-
B2 for level-1 reasoning called R2-B2-Lite at the expense of
a weaker convergence guarantee. When using R2-B2-Lite
for level-1 reasoning, instead of following (3), A selects its
level-1 action x1

1,t by sampling x̃0
2,t from level-0 strategy

P0
2,t of D and best-responding to this sampled action:

x1
1,t , arg maxx1∈X1

α1,t(x1, x̃
0
2,t) . (8)

Our final main result (its proof is in Appendix D) bounds the
expected regret ofA using R2-B2-Lite for level-1 reasoning:

Theorem 4. Let δ ∈ (0, 1). Suppose that A uses R2-
B2-Lite for level-1 reasoning and D uses mixed strat-
egy P0

2,t for level-0 reasoning. If the trace of the co-
variance matrix of x0

2,t ∼ P0
2,t is not more than ωt for

t = 1, . . . , T , then with probability of at least 1 − δ,
E[R1,T ] = O(

∑T
t=1

√
ωt +

√
TβT γT ) where the expec-

tation is with respect to the history of actions selected and
payoffs observed by D as well as x̃0

2,t for t = 1, . . . , T .

From Theorem 4, the expected regret bound tightens if D’s
level-0 mixed strategy P0

2,t has a smaller variance for each
dimension of input action x0

2,t. As a result, the level-0 ac-
tion x̃0

2,t of D that is sampled by A tends to be closer to
the true level-0 action x0

2,t selected by D. Then, A can
select level-1 action x1

1,t that best-responds to a more pre-
cise estimate x̃0

2,t of the level-0 action x0
2,t selected by D,

hence improving its expected payoff. Theorem 4 also re-
veals thatA using R2-B2-Lite for level-1 reasoning achieves
asymptotic no expected regret if the sequence (ωt)t∈Z+ uni-
formly decreases to 0 (i.e., ωt+1 < ωt for t ∈ Z+ and
limT→∞ ωT = 0). Interestingly, such a sufficient condition
for achieving asymptotic no expected regret has a natu-
ral and elegant interpretation in terms of the exploration-
exploitation trade-off: This condition is satisfied if D uses a
level-0 mixed strategy P0

2,t with a decreasing variance for
each dimension of input action x0

2,t, which corresponds to
transitioning from exploration (i.e., a large variance results
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Figure 2. (a-c) Mean regret of agent 1 in synthetic games where
the legend in (a) represents the levels of reasoning of agents 1
vs. 2. Attack score of A in adversarial ML for (d-e) MNIST and
(f) CIFAR-10 datasets where the legend in (d) represents the levels
of reasoning of A vs. D.

in a diffused P0
2,t and hence many actions being sampled) to

exploitation (i.e., a small variance results in a peaked P0
2,t

and hence fewer actions being sampled).

4. Experiments and Discussion
This section empirically evaluates the performance of our
R2-B2 algorithm and demonstrates its generality using syn-
thetic games, adversarial ML, and MARL. Some of our
experimental comparisons can be interpreted as compar-
isons with existing baselines used as level-0 strategies (Sec-
tion 3.1.1). Specifically, we can compare the performance of
our level-1 agent with that of a baseline method when they
are against the same level-0 agent. Moreover, in constant-
sum games, we can perform a more direct comparison by
playing our level-1 agent against an opponent using a base-
line method as a level-0 strategy (Section 4.2.2). Additional
experimental details and results are reported in Appendix F
due to lack of space. All error bars represent standard error.

4.1. Synthetic Games

Firstly, we empirically evaluate the performance of R2-B2
using synthetic games with two agents whose payoff func-
tions are sampled from GP over a discrete input domain.
Both agents use GP-MW and R2-B2/R2-B2-Lite for level-
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0 and level-k ≥ 1 reasoning, respectively. We consider 3
types of games: common-payoff, general-sum, and constant-
sum games. Figs. 2a to 2c show results of the mean regret5

of agent 1 averaged over 10 random samples of GP and 5
initializations of 1 randomly selected action with observed
payoff per sample: In all types of games, when agent 1
reasons at one level higher than agent 2, it incurs a smaller
mean regret than when reasoning at level 0 (blue curve),
which demonstrates the performance advantage of recursive
reasoning and corroborates our theoretical results (Theo-
rems 2 and 3). The same can be observed for agent 1 using
R2-B2-Lite for level-1 reasoning (orange curve) but it does
not perform as well as that using R2-B2 (red curve), which
again agrees with our theoretical result (Theorem 4). More-
over, comparing the red (orange) and blue curves shows
that when against the same level-0 agent, our R2-B2 (R2-
B2-Lite) level-1 agent outperforms the baseline method of
GP-MW (as a level-0 strategy).

Figs. 2a and 2c also reveal the effect of incorrect thinking of
the level of reasoning of the other agent on its performance:
Since agent 2 uses recursive reasoning at level 1 or more,
agent 2 thinks that it is reasoning at one level higher than
agent 1. However, it is in fact reasoning at one level lower
in these two figures. In common-payoff games, since agents
1 and 2 have identical payoff functions, the mean regret of
agent 2 is the same as that of agent 1 in Fig. 2a. So, from
agent 2’s perspective, it benefits from such an incorrect
thinking in common-payoff games. In constant-sum games,
since the payoff function of agent 2 is negated from that
of agent 1, the mean regret of agent 2 increases with a
decreasing mean regret of agent 1 in Fig. 2c. So, from agent
2’s viewpoint, it hurts from such an incorrect thinking in
constant-sum games. Further experimental results on such
incorrect thinking are reported in Appendix F.1.1b.

An intriguing observation from Figs. 2a to 2c is that when
agent 1 reasons at level k ≥ 2, it incurs a smaller mean
regret than when reasoning at level 1. A possible explana-
tion is that when agent 1 reasons at level k ≥ 2, its selected
level-k action (6) best-responds to the actual level-(k − 1)
action (7) selected by agent 2. In contrast, when agent 1
reasons at level 1, its selected level-1 action (3) maximizes
the expected value of GP-UCB w.r.t. agent 2’s level-0 mixed
strategy rather than the actual level-0 action selected by
agent 2. However, as we shall see in the experiments on
adversarial ML in Section 4.2.1, when the expectation in
level-1 reasoning (3) needs to be approximated via sam-
pling but insufficient samples are used, the performance of
level-k ≥ 2 reasoning can be potentially diminished due to
propagation of the approximation error from level 1.

5The mean regret T−1 ∑T
t=1(maxx1∈X1,x2∈X2 f1(x1,x2)−

f1(x1,t,x2,t)) of agent 1 pessimistically estimates (i.e., upper
bounds) R1,T /T (1) and is thus not expected to converge to 0.
Nevertheless, it serves as an appropriate performance metric here.

Moreover, Fig. 2c shows another interesting observation
that is unique for constant-sum games: Agent 1 achieves a
significantly better performance when reasoning at level 3
(i.e., agent 2 reasons at level 2) than at level 2 (i.e., agent
2 reasons at level 1). This can be explained by the fact
that when agent 2 reasons at level 2, it best-responds to
the level-1 action of agent 1, which is most likely different
from the actual action selected by agent 1 since agent 1
is in fact reasoning at level 3. In contrast, when agent 2
reasons at level 1, instead of best-responding to a single
(most likely wrong) action of agent 1, it best-responds to the
expected behavior of agent 1 by attributing a distribution
over all actions of agent 1. As a result, agent 2 suffers from
a smaller performance deficit when reasoning at level 1 (i.e.,
agent 1 reasons at level 2) compared with reasoning at level
2 (i.e., agent 1 reasons at level 3) or higher. Therefore, agent
1 obtains a more dramatic performance advantage when
reasoning at level 3 (gray curve) due to the constant-sum
nature of the game. A deeper implication of this insight
is that although level-1 reasoning may not yield a better
performance than level-k ≥ 2 reasoning as analyzed in
the previous paragraph, it is more robust against incorrect
estimates of the opponent’s level of reasoning in constant-
sum games.

Experimental results on the use of random search and EXP3
(Section 3.1.1) for level-0 reasoning (instead of GP-MW)
are reported in Appendix F.1.1c; the resulting observations
and insights are consistent with those presented here. This
demonstrates the robustness of R2-B2 and corroborates the
generality of our theoretical results (Theorems 2 and 3)
which hold for any level-0 strategy of the other agent. We
have also performed experiments using synthetic games
involving more than two agents (Appendix F.1.2), which
yield some interesting observations that are consistent with
our theoretical analysis.

4.2. Adversarial Machine Learning (ML)

4.2.1. R2-B2 FOR ADVERSARIAL ML

We apply our R2-B2 algorithm to black-box adversarial ML
for image classification problems with deep neural networks
(DNNs) using the MNIST and CIFAR-10 image datasets.
We consider evasion attacks: The attacker A perturbs a test
image to fool a fully trained DNN (referred to as the target
ML model hereafter) into misclassifying the image, while the
defender D transforms the perturbed image with the goal of
ensuring the correct prediction by the classifier. To improve
query efficiency, dimensionality reduction techniques such
as autoencoders have been commonly used for black-box
adversarial attacks (Tu et al., 2019). In our experiments,
variational autoencoders (VAE) (Kingma & Welling, 2014)
are used by both A and D to project the images to a lower-
dimensional space (i.e., 2D for MNIST and 8D for CIFAR-
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10).6 Following a common practice in adversarial ML, we
focus on perturbations with bounded infinity norm as actions
of A and D: The maximum allowed perturbation to each
pixel added by either A or D is no more than a pre-defined
value ε where ε = 0.2 for MNIST and ε = 0.05 for CIFAR-
10. We consider untargeted attacks whereby the goal of
A (D) is to cause (prevent) misclassification by the target
ML model. So, the payoff function of A is the maximum
predictive probability among all incorrect classes (referred
to as attack score hereafter) and its negation is the payoff
function ofD. As a result, the application of R2-B2 to black-
box adversarial ML represents a constant-sum game. An
attack is considered successful if the attack score is larger
than the predictive probability of the correct class, hence
resulting in misclassification of the test image. Both A and
D use GP-MW/random search7 and R2-B2/R2-B2-Lite for
level-0 and level-k ≥ 1 reasoning, respectively.

Figs. 2d to 2f show results of the attack score of A in ad-
versarial ML for both image datasets while Table 1 shows
results of the number of successful attacks by A over 150
iterations of the game; the results are averaged over 10 ini-
tializations of 5 randomly selected actions with observed
payoffs.8 It can be observed from Figs. 2d to 2f that when
A reasons at one level higher than D (orange, red, and gray
curves), its attack score is higher than when reasoning at
level 0 (blue, green, and purple curves). Similarly, when
D reasons at one level higher (green, purple, and yellow
curves), the attack score ofA is reduced. These observations
demonstrate the performance advantage of using recursive
reasoning in adversarial ML. Such an advantage of recursive
reasoning can also be seen from Table 1: For MNIST, when
random search is used for level-0 reasoning and A reasons
at one level higher than D, it achieves a larger number of
successful attacks (12.8, 10.2, and 3.0) than when reasoning
at level 0 (2.6, 0.8, and 1.8). Similarly, when D reasons at
one level higher, it reduces the number of successful attacks
by A (0.8, 1.8, and 0.9) than when reasoning at level 0 (2.6,
12.8, and 10.2). The observations are similar for MNIST
with GP-MW for level-0 reasoning as well as for CIFAR-10
(Table 1).

The performance advantage of A reasoning at level 2 is
observed to be smaller than that at level 1; this may be ex-
plained by the propagation of error of approximating the
expectation in level-1 reasoning (3), as explained previ-
ously in Section 4.1. We investigate and report the effect

6We have detailed in Appendix F.2.1a how VAE can be realisti-
cally incorporated into our algorithm.

7For CIFAR-10 dataset, A uses only random search for level-0
reasoning due to high dimensions, as explained in Appendix F.2.1a.

8The results here use a test image from each dataset that can
clearly illustrate the effects of both attack and defense. Refer
to Appendix F.2.1b for more details and results using more test
images; the observations are consistent with those presented here.

Table 1. Average number of successful attacks by A over 150 iter-
ations in adversarial ML for MNIST and CIFAR-10 datasets where
the levels of reasoning are in the form of A vs. D.

Levels of reasoning MNIST (random) MNIST (GP-MW) CIFAR-10
0 vs. 0 2.6 4.3 70.1
1 vs. 0 12.8 6.0 113.1

1 vs. 0 (R2-B2-Lite) 10.2 6.8 99.7
0 vs. 1 0.8 0.4 25.2

0 vs. 1 (R2-B2-Lite) 1.8 1.0 29.7
2 vs. 1 3.0 5.2 70.9
1 vs. 2 0.9 0.4 54.0

of the number of samples for such an approximation in Ap-
pendix F.2.1c, which reveals that the performance improves
with more samples, albeit with higher computational cost.
Moreover, some insights can also be drawn regarding the
consequence of an incorrect thinking about the opponent’s
level of reasoning in constant-sum games. For example,
for the gray curves in Figs. 2d to 2f, D reasons at level 1
because it thinks that A reasons at level 0. However, A is in
fact reasoning at level 2. As a result, in this constant-sum
game, D’s incorrect thinking about the opponent’s level of
reasoning negatively impacts D’s performance since the
attack scores are increased. This is consistent with the corre-
sponding analysis in synthetic games regarding the effect of
incorrect thinking about the level of reasoning of the other
agent (Section 4.1).

4.2.2. COMPARISON WITH STATE-OF-THE-ART
ADVERSARIAL ATTACK METHODS

It was mentioned in Section 3.1 that our theoretical results
hold for any level-0 strategy of the other agent. So, any
existing adversarial attack (defense) method can be used the
level-0 strategy of A (D). In this experiment, we perform a
direct comparison of R2-B2 with the state-of-the-art black-
box adversarial attack method called Parsimonious (Moon
et al., 2019): We use Parsimonious as the level-0 strategy of
A and let D use R2-B2 for level-1 reasoning. We consider
a realistic setting where in each iteration, D only needs to
receive the image perturbed by A and choose its action that
best-responds to this perturbed image. In this manner,D nat-
urally has access to the history of actions selected by A (as
required by perfect monitoring in our repeated game) since
it receives all images perturbed by A. Additional details of
the experimental setting are reported in Appendix F.2.2a.

We randomly select 70 images from the CIFAR-10 dataset
that are successfully attacked by Parsimonious using ε =
0.05 over 500 iterations without the defender D.9 Our level-
1 R2-B2 defender manages to completely prevent any suc-
cessful attacks for 53 of these images and requires Parsimo-
nious to use more than 3.5 times more queries on average to

9Compared to the work of Moon et al. (2019), we use fewer
iterations and a larger ε, which we think is more realistic as attacks
with an excessively large no. of queries may be easily detected.
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Figure 3. Loss incurred by Parsimonious with and without our
level-1 R2-B2 defender on 4 randomly selected images that are
successfully attacked by Parsimonious.

succeed for 10 other images.10 Fig. 3 shows results of the
loss incurred by Parsimonious (i.e., its original attack objec-
tive) with and without our level-1 R2-B2 defender for 4 of
the successfully defended images; results for other images
are shown in Appendix F.2.2a. This experiment not only
demonstrates the generality of our R2-B2 algorithm, but can
also be of significant independent interest to the adversar-
ial ML community as a defense method against black-box
adversarial attacks.

In addition, as another comparison, we use the same experi-
mental setting with the CIFAR-10 dataset in Section 4.2.1
and play Parsimonious against a level-0 defender using
random search. The results show that when against the
same level-0 defender, Parsimonious achieves a significantly
smaller average number of successful attacks (27.6) com-
pared with our level-1 attacker (113.1, as shown in Table 1).
In other words, our level-1 defender can defend effectively
against Parsimonious, while our level-1 attacker can attack
better than Parsimonious. Note that the unsatisfactory per-
formances of Parsimonious in our experiments might be
largely explained the fact that it does not consider the pres-
ence of a defender. Moreover, our level-1 R2-B2 defender
can also defend against black-box adversarial attacks from
standard BO algorithms (Appendix F.2.2b)11, which have
become popular recently (Ru et al., 2020).

4.3. Multi-Agent Reinforcement Learning (MARL)

We apply R2-B2 to policy search for MARL with more
than two agents. Each action of an agent represents a par-
ticular set of policy parameters controlling the behavior of
the agent in an environment. The payoff to each agent cor-
responding to a selected set of its policy parameters (i.e.,

10The remaining 7 images are so easy to attack such that the
attacks are already successful during the initial exploration phase
of our level-1 R2-B2 defender.

11The BO attacker here only takes its perturbations as inputs
and thus does not consider the defender.

action) is its mean return (i.e., cumulative reward) from
the execution of all the agents’ selected policies across 5
independent episodes. Since the agents interact in the en-
vironment, the payoff function of each agent depends on
the policies (actions) selected by all agents. We use the
predator-prey game from the widely used multi-agent parti-
cle environment in (Lowe et al., 2017). This 3-agent game
(see Fig. 15 in Appendix F.3) contains two predators who
are trying to catch a prey. The prey is rewarded for being far
from the predators and penalized for stepping outside the
boundary. The two predators have identical payoff functions
and are rewarded for being close to the prey (if the prey stays
within the boundary). So, the predator-prey game represents
a general-sum game. All agents use random search12 and
R2-B2 for level-0 and level-k ≥ 1 reasoning, respectively.

Fig. 4 shows results of the (scaled) mean return of the agents
averaged over 10 initializations of 5 randomly selected ac-
tions with observed payoffs. It can be observed from Fig. 4b
that when the prey reasons at level 1 and both predators
reason at level 0 (orange curve), its mean return is much
higher than when reasoning at level 0 (blue curve); this
results from the prey’s ability to learn to stay within the
boundary. Specifically, there exist some “dominated actions”
in this game, namely, those causing the prey to step beyond
the boundary. Regardless of the predators’ policies, such
dominated actions never give large returns to the prey and
are thus likely to yield small values of GP-UCB for any ac-
tions (policies) selected by the predators. So, by reasoning
at level 1 (i.e., by maximizing the expected value of GP-
UCB), the prey is able to eliminate those dominated actions
and thus learn to stay within the boundary. From Fig. 4a,
the mean return of the predators is also improved (orange
curve) because the prey’s ability to stay within the bound-
ary allows the predators to improve their rewards by being
close to the prey despite using random search for level-0
reasoning. In contrast, when the prey reasons at level 0, the
predators rarely get rewarded (blue curve) since the prey
repeatedly steps beyond the boundary. On the other hand,
when predator 1 reasons at level 2 (purple curve), the mean
return of the predators is further increased since predator
1 is now able to learn to actively move close to the prey
instead of moving around using random search for level-0
reasoning (orange curve). When both predators reason at
level 2 (green curve), their mean return is improved even
further. In both of these scenarios, the mean return of the
prey stays close to that associated with the orange curve:
Although the predators are able to actively approach the
prey, this also further helps to prevent the prey from moving
beyond the boundary, which compensates for the loss in its
mean return due to the more strategic predators.

12All agents use only random search for level-0 reasoning due
to high dimensions, as explained in Appendix F.3.
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(a) predators (b) prey

Figure 4. Mean return of predators and prey in predator-prey game
where the legend in (b) represents the levels of reasoning of preda-
tor 1 vs. predator 2 vs. prey.

5. Related Work
The recent work of Sessa et al. (2019) combines online
learning and GP-UCB to derive a no-regret learning al-
gorithm called GP-multiplicative weight (GP-MW) for re-
peated games. As explained in Section 3.1.1, GP-MW can
be used as a level-0 mixed strategy (i.e., no recursive rea-
soning) in our R2-B2 algorithm. Moreover, BO has also
been recently applied in game theory to find the Nash equi-
libria (Picheny et al., 2019).

Humans possess the ability to reason about the mental states
of others (Goldman, 2012). In particular, a person tends to
reason recursively by analyzing the others’ thinking about
himself, which gives rise to recursive reasoning (Pynadath &
Marsella, 2005). The recursive reasoning model of humans
has inspired the development of the cognitive hierarchy
model in behavioral game theory, which uses recursive rea-
soning to explain the behavior of players in games (Camerer
et al., 2004). Moreover, the improved decision-making ca-
pability offered by recursive reasoning has motivated its
application in ML and sequential decision-making problems
such as interactive partially observable Markov decisionn
processes (Gmytrasiewicz & Doshi, 2005; Hoang & Low,
2013), MARL (Wen et al., 2019), among others.

Deep neural networks (DNNs) have recently been found
to be vulnerable to carefully crafted adversarial exam-
ples (Szegedy et al., 2014). Since then, a variety of ad-
versarial attack methods have been developed to exploit this
vulnerability of DNNs (Goodfellow et al., 2015). However,
most of the existing attack methods are white-box attacks
since they require access to the gradient of the ML model.
In contrast, the more realistic black-box attacks (Tu et al.,
2019; Moon et al., 2019), which we have adopted in our ex-
periments, only require query access to the target ML model
and have been attracting significant attention recently. Of
note, BO has recently been used for black-box adversarial
attacks (without considering defenses) and demonstrated
promising query efficiency (Ru et al., 2020). On the other
hand, many attempts have been made to design adversarial
defense methods (Madry et al., 2017; Tramèr et al., 2018)
to make ML models robust against adversarial attacks. In

our experiments, we have adopted the input reconstruc-
tion/transformation technique (Meng & Chen, 2017; Saman-
gouei et al., 2018) as the defense mechanism, in which the
defender attempts to transform the perturbed input to en-
sure the correct prediction by the ML model. Refer to the
detailed survey of adversarial ML in (Yuan et al., 2019).

6. Conclusion and Future Work
This paper describes the first BO algorithm called R2-B2
that is endowed with the capability of recursive reasoning
to model the reasoning process in the interactions between
boundedly rational1, self-interested agents with unknown,
complex, and expensive-to-evaluate payoff functions in re-
peated games. We prove that by reasoning at level k ≥ 2
and one level higher than the other agents, our R2-B2 agent
can achieve faster asymptotic convergence to no regret than
that without utilizing recursive reasoning. We empirically
demonstrate the competitive performance and generality
of R2-B2 through extensive experiments using synthetic
games, adversarial ML, and MARL. For our future work,
we plan to investigate the connection of R2-B2 to other
game-theoretic solution concepts such as Nash equilibrium.
We will also explore the extension of R2-B2 to a more gen-
eral setting where a level-k agent selects its best response
to the action of the other agent who reasons according to
a distribution (e.g., Poisson) over lower levels instead of
only at level k − 1, which is also captured by the cogni-
tive hierarchy model (Camerer et al., 2004). We will con-
sider generalizing R2-B2 to nonmyopic BO (Kharkovskii
et al., 2020b; Ling et al., 2016), batch BO (Daxberger &
Low, 2017), high-dimensional BO (Hoang et al., 2018),
differentially private BO (Kharkovskii et al., 2020a),
and multi-fidelity BO (Zhang et al., 2017; 2019) set-
tings and incorporating early stopping (Dai et al., 2019).
For applications with a huge budget of function evalu-
ations, we like to couple R2-B2 with the use of dis-
tributed/decentralized (Chen et al., 2012; 2013a;b; 2015;
Hoang et al., 2016; 2019b;a; Low et al., 2015; Ouyang &
Low, 2018) or online/stochastic (Hoang et al., 2015; 2017;
Low et al., 2014; Xu et al., 2014; Teng et al., 2020; Yu et al.,
2019a;b) sparse GP models to represent the belief of the
unknown objective function efficiently.
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GP-Localize: Persistent mobile robot localization using
online sparse Gaussian process observation model. In
Proc. AAAI, pp. 2585–2592, 2014.

Yu, H., Chen, Y., Dai, Z., Low, K. H., and Jaillet, P. Im-
plicit posterior variational inference for deep Gaussian
processes. In Proc. NeurIPS, pp. 14475–14486, 2019a.

Yu, H., Hoang, T. N., Low, K. H., and Jaillet, P. Stochas-
tic variational inference for Bayesian sparse Gaussian
process regression. In Proc. IJCNN, 2019b.

Yuan, X., He, P., Zhu, Q., and Li, X. Adversarial examples:
Attacks and defenses for deep learning. IEEE Trans.
Neural Netw. Learning Syst., 30(9):2805–2824, 2019.

Zhang, Y., Hoang, T. N., Low, K. H., and Kankanhalli, M.
Information-based multi-fidelity Bayesian optimization.
In Proc. NIPS Workshop on Bayesian Optimization, 2017.

Zhang, Y., Dai, Z., and Low, K. H. Bayesian optimization
with binary auxiliary information. In Proc. UAI, 2019.



R2-B2: Recursive Reasoning-Based Bayesian Optimization for No-Regret Learning in Games

A. More Background
A.1. Background on Gaussian Processes

In the repeated game, the attacker (A) models its belief about its payoff function f1 using a Gaussian process (GP)
{f1(x1,x2)}x1∈X1,x2∈X2

. In particular, any finite subset of {f1(x1,x2)}x1∈X1,x2∈X2
follows a multivariate Gaussian

distribution (Rasmussen & Williams, 2006). A GP is fully specified by the prior mean µ(x1,x2) and kernel function
k([x1,x2], [x′1,x

′
2]), and we assume w.l.o.g. that µ(x1,x2) = 0 and k([x1,x2], [x′1,x

′
2]) ≤ 1 for all x1,x

′
1 ∈ X1 and

x2,x
′
2 ∈ X2. Given a set of T noisy observations yT , [yt]

>
t=1,...,T at inputs [x1,1,x2,1], . . . , [x1,T ,x2,T ], the posterior

GP belief of f1 at any input [x1,x2] is a Gaussian distribution with the following posterior mean and variance:

µT (x1,x2) , kT (x1,x2)>(KT + σ2I)−1yT ,

σ2
T (x1,x2) , k([x1,x2], [x1,x2])− kT (x1,x2)>(KT + σ2I)−1kT (x1,x2)

(9)

where KT ,
[
k([x1,t,x2,t], [x1,t′ ,x2,t′ ])

]
t,t′=1,...,T

and kT (x1,x2) ,
[
k([x1,t,x2,t], [x1,x2])

]>
t=1,...,T

.

A.2. The GP-MW Algorithm

When A (the attacker) adopts the GP-MW algorithm as the level-0 strategy, after iteration t of the repeated game, A
calculates the updated value of the GP-UCB acquisition function at every input in its entire domain X1 (while fixing the
defender’s input x2 at the value selected in iteration t: x2,t), plugs in the (negative) GP-UCB values as the loss vector (with
the length of the vector being equal to the size of its domain: |X1|) in the widely used multiplicative-weight online learning
algorithm to update the randomized/mixed strategy P0

1,t+1. Subsequently, the resulting updated distribution will be used to
sample A’s action in the next iteration t+ 1, i.e., x1,t+1 ∼ P0

1,t+1. Note that the proof of Theorem 1 results from a slight
modification to the proof of GP-MW (Sessa et al., 2019), i.e., the work of Sessa et al. (2019) has assumed that the payoff
function has bounded norm in a reproducing kernel Hilbert space, whereas we assume that the payoff function is sampled
from a GP. Both assumptions are commonly used in the analysis of BO algorithms. Refer to the work of Sessa et al. (2019)
for more details about the GP-MW algorithm.

B. Extension to Games Involving More than Two Agents
The R2-B2, as well as R2-B2-Lite, algorithm can be extended to repeated games involving more than two (M > 2) agents.
A motivating scenario for this type of games with M > 2 agents is MARL, in which every individual agent attempts to
maximize its own return (payoff). Here, we use A1, . . . ,AM to represent the M agents.

Level-k = 0 Strategy. The extension of level-0 reasoning is trivial since level-0 strategies are agnostic with respect to
the other agent’s action selection strategies, and can thus treat all other agents as a single collective agent. As a result, if
GP-MW is adopted as the level-0 strategy, the theoretical guarantee of Theorem 1 still holds.

Level-k = 1 Strategy. If the agent A1 thinks that all other agents (A2, . . . ,AM ) reason at level 0 and knows the level-0
strategies of all other agents, A1 can reason at level 1 by:

x1
1,t = arg max

x1∈X1

Ex0
2,t,...,x

0
M,t

[
α1,t(x1,x

0
2,t, . . . ,x

0
M,t)

]
, (10)

in which the expectation is taken over the level-0 strategies of all other agents A2, . . . ,AM . R2-B2-Lite can also be applied:

x1
1,t = arg max

x1∈X1

α1,t(x1, x̃
0
2,t, . . . , x̃

0
M,t), (11)

in which x̃0
2,t, . . . , x̃

0
M,t are sampled from the corresponding level-0 strategies of agents A2, . . . ,AM .

For level-1 reasoning, the actions of all other agents can be viewed as the joint action of a single collective agent, whose
level-0 strategy (action distribution) factorizes across different agents. As a result, the theoretical guarantees of Theorems 2
and 4 are still valid.

Level-k ≥ 2 Strategy. Level-k ≥ 2 reasoning with M > 2 agents is significantly more complicated than the two-agent
setting, mainly due to the fact that the other agents may not reason at the same level. For simplicity, we consider the scenario
in which the agent A1 reasons at level 2, and thus all other agents reason at either level 1 or 0. This is a common scenario
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since as discussed in Section 3.1.3 and will be explained at the end of this section, the agents have a strong tendency to
reason at lower levels in the setting with M > 2 agents. Without loss of generality, we assume that agents 2 to M0 reason at
level 0, and agents M0 + 1 to M reason at level 1 (by following the strategy of (10)). In this case, the level-2 action of agent
A1 is selected by best-responding to the corresponding strategy of each of the other agents:

x2
1,t = arg max

x1∈X1

Ex0
2,t,...,x

0
M0,t

[
α1,t(x1,x

0
2,t, . . . ,x

0
M0,t,x

1
M0+1,t, . . . ,x

1
M,t)

]
. (12)

Specifically, the level-1 actions of those agents reasoning at level 1 (x1
M0+1,t, . . . ,x

1
M,t) can be calculated using (10), and

the expectation in (12) is taken with respect to the level-0 strategies of those agents reasoning at level 0 (x0
2,t, . . . ,x

0
M0,t

).
Interestingly, the level-2 reasoning strategy of (12) enjoys the same regret upper bound as shown in Theorem 2 or Theorem 3,
depending on whether there exists level-0 agents (see the detailed explanation and the proof in Appendix E). Unfortunately,
the complexity of reasoning at levels k ≥ 3 grows excessively. Firstly, every other agent reasoning at a lower level k ≥ 2
may best-respond to the other agents in multiple ways. For example, if there are M = 3 agents in the environment and
agent A1 reasons at level 2, A1 might choose its level-2 action in three different ways, with the corresponding reasoning
levels of the 3 agents being [2, 1, 1], [2, 1, 0] or [2, 0, 1]. As a result, if Agent A2 chooses to reason at level 3, in addition to
obtaining the information that agent A1 reasons at level 2, A2 also needs to additionally know in which of the three ways
will the level-2 reasoning of A1 be performed. Therefore, when M > 2 agents are present, as the reasoning level increases,
the reasoning complexity, as well as computational cost, grows significantly. As a consequence, compared with the agents in
2-agent games, the agents in games with M > 2 agents are expected to display a stronger preference to reasoning at low
levels.

C. Proof of Theorems 2 and 3
Before proving the main theorems, we need the following lemma showing a high-probability uniform upper bound on the
value of the payoff function.

Lemma 1. Let δ ∈ (0, 1) and βt = 2 log(|X1|t2π2/3δ), then with probability ≥ 1− δ,

|f1(x1,x2)− µt−1(x1,x2)| ≤ β1/2
t σt−1(x1,x2)

for all x1 ∈ X1, x2 ∈ X2, and t ≥ 1.

The proof of Lemma 1 makes use of the Gaussian concentration inequality and the union bound, and the proof can be found in
Lemma 5.1 of Srinivas et al. (2010). Note that a tighter confidence bound (i.e., a smaller value of βt = 2 log(|X1|t2π2/6δ)) is
possible, however, the value of βt in Lemma 1 is selected for convenience to match the requirement of GP-MW (Theorem 1).

C.1. Theorem 2

Denote the history of game plays for D (the defender) up to iteration t − 1 as Ht−1, which includes
D’s selected actions (inputs) and observed payoffs (outputs) in every iteration from 1 to t − 1: Ht−1 =
[x2,1, y2,1,x2,2, y2,2, . . . ,x2,t−1, y2,t−1]. Again, we use superscripts to denote the reasoning level such that if D rea-
sons at level 0,Ht−1 = [x0

2,1, y
0
2,1,x

0
2,2, y

0
2,2, . . . ,x

0
2,t−1, y

0
2,t−1].

Here, we analyze the regret of the level-1 strategy, i.e., when A (the attacker) reasons at level k = 1 and D (the defender)
reasons at level k′ = 0. Note that in iteration t, the level-0 strategy of D (i.e., the distribution of x2,t) may depend on the
history of input-output pairs of D, i.e., Ht−1, which is true for both the GP-MW and EXP3 strategies. Therefore, when
analyzing A’s expected regret in iteration t (with the expectation taken over the level-0 strategy of D in iteration t), we
need to condition onHt−1. We denote the regret of A in iteration t as r1,t, i.e., R1,T =

∑T
t=1 r1,t in which R1,T represents

external regret defined in (1). As a result, with probability of at least 1− δ, the expected regret ofA (the attacker) in iteration
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t, givenHt−1, can be analyzed as

Ex0
2,t

[r1,t|Ht−1] = Ex0
2,t

[
f1

(
x∗1,x

0
2,t

)
− f1

(
x1
1,t,x

0
2,t]
)
|Ht−1

]
(a)
≤ Ex0

2,t

[
α1,t

(
x∗1,x

0
2,t

)
− f1

(
x1
1,t,x

0
2,t

)
|Ht−1

]
(b)
≤ Ex0

2,t

[
α1,t

(
x1
1,t,x

0
2,t

)
− f1

(
x1
1,t,x

0
2,t

)
|Ht−1

]
(c)
≤ Ex0

2,t

[
µt−1(x1

1,t,x
0
2,t) + β

1/2
t σt−1(x1

1,t,x
0
2,t)− f1

(
x1
1,t,x

0
2,t

)
|Ht−1

]
(d)
≤ Ex0

2,t

[
2β

1/2
t σt−1(x1

1,t,x
0
2,t)|Ht−1

]
(13)

in which (a) results from Lemma 1 and the definition of the GP-UCB acquisition function (α) in Section 2, (b) follows from
the definition of the level-1 strategy (3) as well as the linearity of the expectation operator, (c) results from the definition of
the GP-UCB acquisition function, and (d) is again a consequence of Lemma 1.

Next, the expected external regret of A reasoning at level 1 can be upper-bounded:

E[R1,T ] = Ex0
2,1,y

0
2,1,...,x

0
2,T−1,y

0
2,T−1,x

0
2,T

[R1,T ]

= Ex0
2,1,y

0
2,1,...,x

0
2,T−1,y

0
2,T−1,x

0
2,T

 T∑
t=1

r1,t


(a)
= Ex0

2,1

[
r1,1
]

+ Ex0
2,1,y

0
2,1,x

0
2,2

[
r1,2
]

+ . . .+ Ex0
2,1,y

0
2,1,...,x

0
2,T−1,y

0
2,T−1,x

0
2,T

[
r1,T

]
(b)
= Ex0

2,1

[
r1,1
]

+ Ex0
2,1,y

0
2,1

[
Ex0

2,2

[
r1,2|x0

2,1, y
0
2,1

]]
+ . . .+

Ex0
2,1,y

0
2,1,...,x

0
2,T−1,y

0
2,T−1

[
Ex0

2,T

[
r1,T |x0

2,1, y
0
2,1, . . . ,x

0
2,T−1, y

0
2,T−1

]]
= Ex0

2,1

[
r1,1
]

+ EH1

[
Ex0

2,2

[
r1,2|H1

]]
+ . . .+ EHT−1

[
Ex0

2,T

[
r1,T |HT−1

]]
(c)
≤ Ex0

2,1

[
2β

1/2
1 σ0(x1,1,x2,1)

]
+ EH1

[
Ex0

2,2

[
2β

1/2
2 σ1(x1,2,x2,2)|H1

]]
+ . . .+

EHT−1

[
Ex0

2,T

[
2β

1/2
T σT−1(x1,T ,x2,T )|HT−1

]]
(d)
= Ex0

2,1

[
2β

1/2
1 σ0(x1,1,x2,1)

]
+ EH1,x0

2,2

[
2β

1/2
2 σ1(x1,2,x2,2)

]
+ . . .+

EHT−1,x0
2,T

[
2β

1/2
T σT−1(x1,T ,x2,T )

]
(e)
= EHT−1,x0

2,T

 T∑
t=1

2β
1/2
t σt−1(x1,t,x2,t)


(f)
≤ EHT−1,x0

2,T

[√
C1TβT γT

]
(g)
=
√
C1TβT γT

(14)

in which C1 = 8/ log(1 + σ−21 ), βT is defined in Lemma 1, and γT is the maximum information gain about the function
f1 obtained from any set of observations of size T . Steps (a) and (e) both result from the fact that r1,t only depends on
the level-0 strategy of iteration t and the history up to iteration t − 1 (through the level-0 strategy of iteration t), and is
thus independent of those input actions and output observations in future iterations t+ 1, . . . , T . (b) and (d) both follow
from the law of total expectation, (c) results from (13), (f) follows from Lemmas 5.3 and 5.4 of Srinivas et al. (2010), (g)
follows since all terms inside the expectation are independent of the history of input-output pairs. Note that the expectation
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in (14) is taken over the history of selected actions and observed payoffs of D. Note that an upper bound on the regret can
be easily derived using the upper bound on the expected regret (14) through Markov’s inequality, which suggests that level-1
reasoning achieves no regret asymptotically.

Of note, in the scenario in which more than two (M > 2) agents are present (Appendix B), with the modified level-1
policy given by (10), the proofs of (13) and (14) still go through by simply replacing x0

2,t with the concatenated vector of
[x0

2,t, . . . ,x
0
M,t] (i.e., the concatenation of the level-0 actions of all other agents) in every step of the proof. Similarly, the

expectation of the regret would be taken over the history of input-output pairs of all other agents 2, . . . ,M .

C.2. Theorem 3

For level-k ≥ 2 reasoning, i.e., when A reasons at level k (for k ≥ 2) and D reasons at level k′ = k − 1 ≥ 1, the regret of
A in iteration t can be analyzed as:

r1,t = f1
(
x∗1,x2,t

)
− f1

(
x1,t,x2,t

)
= f1

(
x∗1,x

k−1
2,t

)
− f1

(
xk1,t,x

k−1
2,t

)
(a)
≤ α1,t

(
x∗1,x

k−1
2,t

)
− f1

(
xk1,t,x

k−1
2,t

)
(b)
≤ α1,t

(
xk1,t,x

k−1
2,t

)
− f1

(
xk1,t,x

k−1
2,t

)
≤ 2β

1/2
t σt−1(x1,t,x2,t)

(15)

in which (a) follows from Lemma 1, (b) results from the fact that xk1,t is selected by maximizing the GP-UCB acquisition
function α with respect to xk−12,t according to (6). (15) also holds with probability of at least 1− δ.

Next, the external regret can be upper bounded in a similar way as (14):

R1,T =

T∑
t=1

r1,t
(a)
≤

T∑
t=1

2β
1/2
t σt−1(x1,t,x2,t)

(b)
≤
√
C1TβT γT (16)

in which (a) results from (15), and (b) again follows from Lemmas 5.3 and 5.4 of Srinivas et al. (2010).

D. Proof of Theorem 4
Note that the level-1 action selected byA (the attacker) following R2-B2-Lite (8) is stochastic, instead of being deterministic
as in R2-B2 (3). In the following, we denote the level-1 action of A following R2-B2-Lite as x1

1,t(x̃
0
2,t) since, conditioned

on all the game history up to iteration t − 1, the selected level-1 action is a deterministic function of A’s simulated
action of D (the defender) at level 0 (x̃0

2,t). Note that, in contrast to the corresponding definition in Appendix C.1, the
history of game plays H′t−1 we define here additionally includes A’s simulated action of D in every iteration: H′t−1 =
[x0

2,1, x̃
0
2,1, y

0
2,1,x

0
2,2, x̃

0
2,2, y

0
2,2, . . . ,x

0
2,t−1, x̃

0
2,t−1, y

0
2,t−1]. We use Σ2,t to denote the covariance matrix of the level-0

mixed strategy of D in iteration t (P2,t), and use Tr(Σ2,t) to represent its trace. As a result, the expected regret of A in
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iteration t can be analyzed as:

Ex0
2,t,x̃

0
2,t

[r1,t|H′t−1] = Ex0
2,t,x̃

0
2,t

[
f1

(
x∗1,x

0
2,t

)
− f1

(
x1
1,t(x̃

0
2,t),x

0
2,t

)
|H′t−1

]
(a)
≤ Ex0

2,t,x̃
0
2,t

[
α1,t

(
x∗1,x

0
2,t

)
− f1

(
x1
1,t(x̃

0
2,t),x

0
2,t

)
|H′t−1

]
(b)
= Ex0

2,t,x̃
0
2,t

[
α1,t

(
x∗1, x̃

0
2,t

)
− f1

(
x1
1,t(x̃

0
2,t),x

0
2,t

)
|H′t−1

]
(c)
≤ Ex0

2,t,x̃
0
2,t

[
α1,t

(
x1
1,t(x̃

0
2,t), x̃

0
2,t

)
− f1

(
x1
1,t(x̃

0
2,t),x

0
2,t

)
|H′t−1

]
(d)
= Ex0

2,t,x̃
0
2,t

[
α1,t

(
x1
1,t(x̃

(0,1)
2,t ), x̃0

2,t

)
− α1,t

(
x1
1,t(x̃

0
2,t),x

0
2,t

)
+ α1,t

(
x1
1,t(x̃

0
2,t),x

0
2,t

)
− f1

(
x1
1,t(x̃

0
2,t),x

0
2,t

)
|H′t−1

]
(e)
≤ Ex0

2,t,x̃
0
2,t

[
Lα1

∥∥∥x̃0
2,t − x0

2,t

∥∥∥
2
|H′t−1

]
+ Ex0

2,t,x̃
0
2,t

[
α1,t

(
x1
1,t(x̃

0
2,t),x

0
2,t

)
− f1

(
x1
1,t(x̃

0
2,t),x

0
2,t

)
|H′t−1

]
(f)
≤ Ex0

2,t,x̃
0
2,t

[
Lα1

√∥∥∥x̃0
2,t − x0

2,t

∥∥∥2
2
|H′t−1

]
+ Ex0

2,t,x̃
0
2,t

[
2β

1/2
t σt−1(x1

1,t(x̃
0
2,t),x

0
2,t)|H′t−1

]
(g)
≤ Lα1

√
Ex0

2,t,x̃
0
2,t

[∥∥∥x̃0
2,t − x0

2,t

∥∥∥2
2
|H′t−1

]
+ Ex0

2,t,x̃
0
2,t

[
2β

1/2
t σt−1(x1

1,t(x̃
0
2,t),x

0
2,t)|H′t−1

]
= Lα1

√
Ex0

2,t,x̃
0
2,t

[(
x̃0
2,t − x0

2,t

)> (
x̃0
2,t − x0

2,t

)
|H′t−1

]
+ Ex0

2,t,x̃
0
2,t

[
2β

1/2
t σt−1(x1

1,t(x̃
0
2,t),x

0
2,t)|H′t−1

]
= Lα1

√
Ex0

2,t,x̃
0
2,t

[(
x̃0
2,t

)> (
x̃0
2,t

)
+
(
x0
2,t

)> (
x0
2,t

)
− 2

(
x̃0
2,t

)> (
x0
2,t

)
|H′t−1

]
+

Ex0
2,t,x̃

0
2,t

[
2β

1/2
t σt−1(x1

1,t(x̃
0
2,t),x

0
2,t)|H′t−1

]
(h)
= Lα1

√
Ex̃0

2,t

[(
x̃0
2,t

)> (
x̃0
2,t

)]
+ Ex0

2,t

[(
x0
2,t

)> (
x0
2,t

)]
− 2Ex̃0

2,t

[
x̃0
2,t

]>
Ex0

2,t

[
x0
2,t

]
+

Ex0
2,t,x̃

0
2,t

[
2β

1/2
t σt−1(x1

1,t(x̃
0
2,t),x

0
2,t)|H′t−1

]
(i)
= Lα1

√
Ex0

2,t

[(
x0
2,t

)> (
x0
2,t

)]
+ Ex0

2,t

[(
x0
2,t

)> (
x0
2,t

)]
− 2Ex0

2,t

[
x0
2,t

]>
Ex0

2,t

[
x0
2,t

]
+

Ex0
2,t,x̃

0
2,t

[
2β

1/2
t σt−1(x1

1,t(x̃
0
2,t),x

0
2,t)|H′t−1

]
=
√

2Lα1

√
Ex0

2,t

[(
x0
2,t

)> (
x0
2,t

)]
− Ex0

2,t

[
x0
2,t

]>
Ex0

2,t

[
x0
2,t

]
+ Ex0

2,t,x̃
0
2,t

[
2β

1/2
t σt−1(x1

1,t(x̃
0
2,t),x

0
2,t)|H′t−1

]
(j)
=
√

2Lα1

√
Tr
(
Σ2,t

)
+ Ex0

2,t,x̃
0
2,t

[
2β

1/2
t σt−1(x1

1,t(x̃
0
2,t),x

0
2,t)|H′t−1

]
(k)
≤
√

2Lα1

√
ωt + Ex0

2,t,x̃
0
2,t

[
2β

1/2
t σt−1(x1

1,t(x̃
0
2,t),x

0
2,t)|H′t−1

]
(17)

in which (a) results from Lemma 1; (b) holds because, conditioned on Ht−1, x0
2,t and x̃

(0,1)
2,t are sampled from the same

distribution and thus identically distributed; (c) follows from the way in which x1
1,t is selected using the R2-B2-Lite

algorithm (8), i.e., by deterministically best-responding to x̃0
2,t in terms of the GP-UCB acquisition function; (d) simply

subtracts and adds the same GP-UCB term; (e) follows from the Lipschitz continuity of the GP-UCB acquisition function,
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whose Lipschitz constant (denoted as Lα1
) has been shown to be finite in (Kim & Choi, 2019); (f) is a result of the definition

of the GP-UCB acquisition function (Section 2) and Lemma 1; (g) results from the concavity of the square root function;
(h) follows from the linearity of expectation and the fact that x̃0

2,t and x0
2,t are independent; (i) again results from the

fact that x̃0
2,t and x0

2,t are identically distributed; (j) follows from the definition of Σ2,t, i.e., the covariance matrix of the
level-0 mixed strategy of the defender in iteration t; (k) follows from our assumption in Theorem 4 that the trace of Σ2,t is
upper-bounded by the sequence {ωt} for all t ≥ 1. Note that all expectations in (17) are conditioned on D′t−1, and some of
the conditioning are omitted to shorten the expression.

Next, the expected external regret can be upper-bounded in a similar way as (14):
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(18)

Note that compared with Theorem 2, the expectation in Theorem 4 is additionally taken over A’s simulated action of D in
all iterations, i.e., x̃0

2,1, . . . , x̃
0
2,T . Finally, Theorem 4 follows:

E[R1,T ] ≤ O

 T∑
t=1

√
ωt +

√
TβT γT

 (19)

Similar to the analysis of R2-B2, in the scenario where more than two (M > 2) agents are involved, with the modified
level-1 R2-B2-Lite algorithm given by (11), the proofs given above still go through by simply replacing x0

2,t with the
concatenated vector of [x0

2,t, . . . ,x
0
M,t] (and replacing x̃0

2,t with the concatenated vector of [x̃0
2,t, . . . , x̃

0
M,t]) in every step of

the proof. Again, the expectation of the regret of agent A1 is taken over the history of input-output pairs of all other agents,
as well as A1’s simulated level-0 actions of all other agents in every iteration.

E. Proof of Theorems 2 and 3 for M > 2 Agents
We prove here that the regret upper bound in Theorems 2 and 3 also hold in games with M > 2 agents. We only give
the proof for level-k ≥ 2 strategy since the proofs for level-0 and level-1 strategies are straightforward as explained in
Appendices B and C. For simplicity, we only focus on the scenario in which agent A1 reasons at level 2, whereas all other
agents reason at either level 0 or level 1. However, the proof can be generalized to the settings in which agent A1 reasons at
a higher level k > 2. Following the notations of Appendix B, the expected regret of A1 in iteration t can be upper bounded
as:
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(20)

The proof given in (20) is analogous to (13). The key difference from (13) is that in this case, the expectation here is taken
over the level-0 strategies of those agents reasoning at level 0, i.e., A2, . . . ,AM0 . In contrast, in (13), the expectation is only
taken over the level-0 strategy of the single opponent reasoning at level 0.
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Note that if none of the other agents reason at level 0, the expectation operator in (20) can be dropped. As a result, (16) can
be directly used to show that the resulting upper bound on the regret is the same as that given in Theorem 3. On the other
hand, if there exists at least 1 level-0 agents, the expectation operator remains. Therefore, the subsequent proof follows
from (14) and the resulting regret upper bound becomes the same as that shown in Theorem 2, except that the expectation of
the regret is taken over the history of input-output pairs of all level-0 agents.

F. More Experimental Details and Results
All experiments are run on computers with 16 cores of Intel Xeon processor, 5 NVIDIA GTX1080 Ti GPUs, and a RAM of
256G.

F.1. Synthetic Games

F.1.1. 2-AGENT SYNTHETIC GAMES

(a) Detailed Experimental Setting
The payoff functions used in the synthetic games are sampled from GPs with the Squared Exponential kernel with
length scale 0.1. All payoff functions are defined on a 2-dimensional grid of equally spaced points in [0, 1]2 with size
|X1| × |X2| = 100 × 100. Therefore, the action spaces of agent 1 and agent 2 both consist of |X1| = |X2| = 100
points. For common-payoff games, we randomly sample a function f1 from a GP on the domain X1 × X2 and set
f2(x1,x2) = f1(x1,x2) for all x1 ∈ X1 and x2 ∈ X2; regarding general-sum games, we randomly and independently
sample two functions, f1 and f2, from the same GP; as for constant-sum games, we draw a function f1 from the GP, and
set f2(x1,x2) = 1− f1(x1,x2) for all x1 ∈ X1 and x2 ∈ X2. All payoff functions are scaled into the range [0, 1]. Note
that since the domain size is not excessively large, the level-1 action can be selected by solving (3) exactly instead of
approximately. The true GP hyperparameters, with which the synthetic payoff functions are sampled, are used as the GP
hyperparameters.

(b) More Results on the Impact of Incorrect Thinking about the Other Agent
We further investigate how the performance of an agent is affected by incorrect thinking about the other agent. Fig. 5
plots the performance of agent 1 when agent 1 and agent 2 reason at levels 1 and 0 respectively, while agent 1’s thinking
about agent 2’s level-0 strategy is incorrect. The figures demonstrate that in the presence of an incorrect thinking about
the other agent’s level-0 strategy, the performance of agent 1 only suffers from a marginal drop, although the theoretical
guarantee offered by Theorem 2 no longer holds. Fig. 6 illustrates the impacts of an incorrect thinking about the other
agent’s reasoning level. As shown in the figure, when agent 2’s reasoning level is fixed at level 0, agent 1 obtains the best
performance when reasoning at level 1, which agrees with our theoretical analysis since by reasoning at level 1, agent 1’s
performance is theoretically guaranteed (Theorem 2). Meanwhile, when agent 1 reasons at a higher level (e.g., level 2 or
level 3), the performance becomes worse (compared with reasoning at level 1) yet is still better than reasoning at level 0 (the
blue curve); this might be attributed to the fact that when agent 1 reasons at level 2 or 3, even though agent 1’s GP-UCB
value is highly likely to be maximized with respect to the wrong action in every iteration (6), this could still help agent 1
to eliminate some potentially “dominated actions”, i.e., those actions which yield small GP-UCB values regardless of the
action of agent 2. This ability to discard those dominated actions gives agent 1 a preference to avoid selecting actions with
small GP-UCB values, and thus might help agent 1 obtain a better performance compared with reasoning at level 0.

(c) Results Using Other Level-0 Strategies
In addition to the results presented in the main text which use GP-MW as the level-0 strategy (Fig. 2a to c), the entire set of
experiments are repeated for the random search and EXP3 level-0 strategies, whose corresponding results are presented in
Figs. 7 and 8. These results yield the same observations and interpretations as Figs. 2a to c, and demonstrate the robustness
of our R2-B2 algorithm with respect to the choice of the level-0 strategy. Another interesting observation regarding different
level-0 strategies is that in common-payoff and general-sum games, when both agents reason at level 0, running a no-regret
level-0 strategy (e.g., GP-MW or EXP3), instead of random search, leads to decreasing mean regret. Specifically, when both
agents reason at level 0, the mean regret in common-payoff and general-sum games is decreasing if either GP-MW (Fig. 2a
and b) or EXP3 (Fig. 8a and b) is used as the level-0 strategy (with the decreasing trend more discernible in common-payoff
games), while the random search level-0 strategy results in a non-decreasing mean regret (Fig. 7a and b). This observation
demonstrates the benefit of adopting a better/more strategic level-0 strategy (instead of a non-strategic level-0 strategy such
as random search) when reasoning at level 0.
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(a) General-sum games.
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(b) Constant-sum games.

Figure 5. Agent 1’s performance of level-1 reasoning (agent 2 reasons at level 0) when agent 1’s thinking about agent 2’s level-0 strategy
is incorrect. I.e., agent 2 uses GP-MW as the level-0 strategy, while agent 1 thinks that agent 2 uses the random search level-0 strategy.
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Figure 6. Agent 1’s performance when its thinking about agent 2’s reasoning level is incorrect. That is, agent 2 reasons at level 0, while
agent 1 reasons at levels 1, 2 and 3, where the last two settings result from agent 1’s incorrect thinking about agent 2’s reasoning level.
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Figure 7. Mean regret of agent 1 in different types of synthetic games, with agent 2 taking the random search level-0 strategy.
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Figure 8. Mean regret of agent 1 in different types of synthetic games, with agent 2 taking the EXP-3 level-0 strategy.

For the EXP3 level-0 strategy, we follow the practice of the work of Rahimi & Recht (2007). That is, we firstly draw d′1 = 5
samples of [ωi]i=1,...,d′1

from the spectral density of the GP kernel (i.e., the Squared Exponential kernel with length scale
0.1), and d′1 samples of [bi]i=1,...,d′1

from the uniform distribution over [0, 2π]; then, for every input x1 ∈ X1 in the domain,
we use [

√
2/d′1 cos(ωix1 + bi)]i=1,...,d′1

as the d′1-dimensional feature representing x1. Subsequently, the GP surrogate can
be replaced with a linear surrogate model with the resulting features as inputs, and thus the EXP3 algorithm for adversarial
linear bandit can be applied.

F.1.2. SYNTHETIC GAMES WITH M > 2 AGENTS

We also use synthetic games with M > 2 agents to evaluate the effectiveness of our R2-B2 algorithm when more than two
agents are involved. We consider two types of synthetic games involving three agents. In the first type of games, the payoff
functions of the three agents are independently sampled from a GP. The second type of games includes one adversary and
two (cooperating) agents, the payoff function for the adversary, f1(x1,x2,x3), is a function sampled from a GP (and scaled
to the range [0, 1]), whereas the payoff functions for the two agents are identical and defined as 1− f1(x1,x2,x3). We use
GP-MW as the level-0 strategy.

Fig. 9a displays the mean regret of agent 1 in the first type of games, i.e., games with independent payoff functions. The
figure shows that in games with more than two agents, agent 1 gains benefit by following the R2-B2 algorithm presented in
Appendix B. Specifically, the orange and red curves demonstrate the advantage of level-1 reasoning using R2-B2 (10) and
R2-B2-Lite (11) respectively, and the green and purple curves illustrate the benefit of level-k > 2 reasoning (12).

Fig. 9b shows the mean regret of the adversary in the second type of games involving one adversary and two agents. Note
that the mean regret of the two agents can be directly read from the figure since it is equal to 1− the mean regret of the
adversary. A number of interesting insights can be drawn from Fig. 9. Comparing the orange and blue curves (similarly
the green and red curves, and the yellow and gray curves) shows that the adversary obtains smaller regret by reasoning at
a higher level than both agents; similarly, comparison of the blue and red curves (as well as the blue vs the purple, gray,
and cyan curves) demonstrates that both agents enjoy a smaller regret when at least one of them reasons at a higher level
than the adversary; comparing the gray and red curves reveals that when both agents reason at a higher level (in contrast to
when one of them reasons at a higher level), the agents benefit more in terms of regret; comparison of the cyan and purple
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(b) Mean regret of the adversary in the three-agent game with
1 adversary and 2 agents. The reasoning levels are in the form
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Figure 9. Mean regret in three-agent games.

curves shows that given that the two agents reason at levels 2 and 1 respectively, the adversary reduces its deficit in regret by
reasoning at level 1 instead of level 0.

F.2. Adversarial ML

F.2.1. R2-B2 FOR ADVERSARIAL ML

(a) Detailed Experimental Setting
We focus on the standard black-box setting, i.e., both A (the attacker) and D (the defender) can only access the target ML
model by querying the model and observing the corresponding predictive probabilities for different classes (Tu et al., 2019).
Query efficiency is of critical importance for a black-box attacker since each query of the target ML model can be costly and
an excessive number of queries might lead to the risk of being detected. Similarly, when defending against an attacker who
adopts a query-efficient algorithm, it is also reasonable for the defender to defend in a query-efficient manner. This justifies
the use of BO-based methods for both adversarial attack and defense methods, since BO has been repeatedly demonstrated
to be sample-efficient (Shahriari et al., 2016) and has been successfully applied to black-box adversarial attacks (Ru et al.,
2020). The GP hyperparameters are optimized by maximizing the marginal likelihood after every 10 iterations.

Both the MNIST and CIFAR-10 datasets can be downloaded using the Keras package in Python13. All pixel values of
all images are normalized into the range [0, 1]. For the MNIST dataset, we use a convolutional neural network (CNN)
model14 with 99.25% validation accuracy (trained on 60, 000 samples and validated using 10, 000 samples) as the target
ML model, and for CIFAR-10, we use a ResNet model15 with 92.32% validation accuracy (trained using 50, 000 samples
and validated on 10, 000 samples, data augmentation is used). All test images used in the experiments for attack/defense
are randomly selected among those correctly classified images from the validation set. To improve the query efficiency
of black-box adversarial attacks, different dimensionality reduction techniques such as autoencoder have been adopted to
reduce the dimensionality of image data (Tu et al., 2019). In this work, we let both A and D use Variational Autoencoders
(VAEs) (Kingma & Welling, 2014) for dimensionality reduction in a realistic setting: In every iteration of the repeated game,
A encodes the test image into a low-dimensional latent vector (i.e., the mean vector of the encoded latent distribution) using
a VAE, perturbs the vector, and then decodes the perturbed vector to obtained the resulting image with perturbations; next,
D receives the perturbed image, uses a VAE to encode the perturbed image to obtain a low-dimensional latent vector (i.e.,
the mean vector of the encoded latent distribution), adds transformations (perturbations) to the latent vector, and finally
decodes the vector into the final image to be passed as input to the target ML model. In the experiments, the same VAE is
used by both A and D, but the use of different VAEs can be easily achieved. The latent dimension (LD) is d1 = d2 = 2 for
MNIST and d1 = d2 = 8 for CIFAR-10; the action space for both A and D (i.e., the space of allowed perturbations to the

13https://keras.io/
14https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
15https://github.com/keras-team/keras/blob/master/examples/cifar10_resnet.py

https://keras.io/
https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
https://github.com/keras-team/keras/blob/master/examples/cifar10_resnet.py
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latent vectors) is [−2, 2]2 for MNIST, and [−2, 2]8 for CIFAR-10. For MNIST, the VAE16 is a multi-layer perceptron (MLP)
with ReLU activation, in which the input image is flattened into a 28× 28-dimensional vector and both the encoder and
decoder consist of a 512-dimensional hidden layer. Regarding CIFAR-10, the encoder of the VAE uses 3 convolutional
layers followed by a fully connected layer, whereas the decoder uses 2 fully connected layers followed by 3 de-convolutional
layers17.

For both A and D, the image produced by the decoder of their VAE is clipped such that the requirement of bounded
perturbations in terms of the infinity norm (as mentioned in Section 4.2.1 of the main text) is satisfied. We consider
untargeted attacks in this work, i.e., the attacker’s (defender’s) goal is to cause (prevent) misclassification of the ML model.
However, our framework can also deal with targeted attacks (i.e., the attacker aims at causing the target ML model to
misclassify a test image into a particular class) through slight modifications to the payoff functions. The payoff function
value for A (f1(x1,x2), referred to as the attack score) for a pair of perturbations selected by A (x1) and D (x2) is the
maximum predictive probability (corresponding to the probability that test input belongs to a class) among all incorrect
classes, which is bounded in (0, 1). For example, in a 10-class classification model (i.e., for both MNIST and CIFAR-10),
if the correct/ground-truth class for a test image is 0, the value of the payoff function for A is the maximum predictive
probability among classes 1 to 9. The payoff function for D is f2(x1,x2) = 1− f1(x1,x2) since the defender attempts to
make sure that the predictive probability of the correct class remains the largest by minimizing the maximum predictive
probability among all incorrect classes.

As reported in the main text (Section 4.2.1), we use GP-MW and random search as the level-0 strategies for MNIST, and
only use random search for CIFAR-10. The reason is that GP-MW requires a discrete input domain (or a discretized
continuous input domain) since it needs to maintain and update a discrete distribution over the input domain. Therefore, it is
difficult to apply GP-MW to a high-dimensional continuous input domain (e.g., the 8-dimensional domain in the CIFAR-10
experiment) since an accurate discretization of the high-dimensional domain would lead to an intractably large domain for
the discrete distribution, making it intractable to update and sample from the distribution. Similarly, the application of the
EXP3 algorithm is also limited to low-dimensional input domains for the same reason.

(b) Results Using Multiple Images
Note that different images may be associated with different degrees of difficulty to attack and to defend, i.e., some images
are easier to attack (and thus harder to defend) and others may be easier to defend (and thus harder to attack). Therefore, for
those images that are easier to attack than to defend, it is easier for the attacker to increase the attack score than for the
defender to reduce the attack score; as a result, the advantage achieved by the defender (i.e., lower attack score) when the
defender reasons at one level higher would be less discernible since the defender’s task (i.e., to decrease the attack score)
is more difficult. On the other hand, for those images that are easier to defend than to attack (e.g., the MNIST dataset as
demonstrated below), the benefit obtained by the attacker (i.e., higher attack score) when it reasons at one level higher
would be harder to delineate since the attacker’s task of increasing the attack score is more difficult. The image from
MNIST/CIFAR-10 that is used to produce the results reported in the main text (Fig. 2d to f) is selected to ensure that the
difficulties of attack and defense are comparable such that the effects of both attack and defense can be clearly illustrated.

Figs. 10 and 11 show the attack scores on the MNIST and CIFAR-10 datasets averaged over multiple randomly selected
images (30 images for MNIST and 9 images for CIFAR-10). These figures yield consistent observations with those presented
in the main text, except that for MNIST (Fig. 10), the attack scores are generally lower (compared with the blue curve
where both A and D reason at level 0), which could be explained by the fact that the images in the MNIST dataset are
generally easier to defend than to attack (i.e., it is easier to make the attack score lower than to make it higher, as explained
in the previous paragraph) because of the simplicity of the dataset and the high accuracy of the target ML model (i.e., a
validation accuracy of 99.25%). As a result, when A reasons at level 2 and D reasons at level 1, the attack score is lower
than when both agents reason at level 0 (compare the gray and blue curves in Fig. 10). In addition to the above-mentioned
factor that the MNIST dataset is in general harder to attack (i.e., harder to make the attack score higher than to make it
lower), this deviation from our theoretical result (Theorem 3) might also be attributed to the error in approximating the
expectation operator in level-1 reasoning. However, the benefit of reasoning at one level higher can still be observed in this
case, since when the reasoning level of D is fixed at 1, it is still beneficial for A to reason at level 2 (i.e., the gray curve)
instead of level 0 (i.e., the green curves). The corresponding average number of successful attacks in 150 iterations for
different reasoning levels yield the same observations and interpretations as Figs. 10 and 11: For MNIST (Fig. 10), the

16https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder.py
17https://github.com/chaitanya100100/VAE-for-Image-Generation

https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder.py
https://github.com/chaitanya100100/VAE-for-Image-Generation
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Figure 10. Attack scores averaged over 30 images from MNIST. Each image is again averaged over 5 initializations of 5 randomly selected
actions.
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Figure 11. Attack scores averaged over 9 images from CIFAR-10. Each image is again averaged over 5 initializations of 5 randomly
selected actions.

number of successful attacks are (in the order of the figure legend from top to bottom) 20.4, 23.0, 21.3, 9.7, 11.0, 12.4, 7.9,
for CIFAR-10 (Fig. 11), they are 32.9, 43.0, 38.8, 12.2, 21.0.

(c) Impact of the Number of Samples Used for Approximating the Expectation in Level-1 Reasoning
For the results reported in the main text, the number of samples used to approximate the expectation in level-1 reasoning
are 500 for MNIST (Fig. 2d and e) and 1, 000 for CIFAR-10 (Fig. 2f). Note that since the input dimension is higher for
CIFAR-10, a larger number of samples is needed to accurately approximate the level-0 mixed strategy (over which the
expectation in level-1 reasoning is taken). Here, we further investigate the impact of the number of samples used in the
approximation of the expectation operator in level-1 reasoning (3). Fig. 12 shows the attack scores for the MNIST dataset
when A and D reason at levels 2 and 1 respectively when different number of samples are used for the approximation.
Random search is used as the level-0 mixed strategy. The figure, as well as the corresponding number of successful attacks,
demonstrates that the attack becomes more effective as more samples are used for the approximation. The benefit offered
by using more samples for the approximation results from the fact that with a better accuracy at estimating D’s level-1
action (5) (i.e., the level-1 action of D simulated by A is more likely to be the same as the actual level-1 action selected by
D), the attacker is able to best-respond to D’s action more accurately (4), thus leading to an improved performance.



R2-B2: Recursive Reasoning-Based Bayesian Optimization for No-Regret Learning in Games

0 25 50 75 100 125 150
Iterations

0.05

0.10

0.15

0.20

At
ta

ck
 S

co
re

s

200 samples
500 samples
1000 samples

Figure 12. Attack scores for MNIST when A (the attacker) and D (the defender) reason at levels 2 and 1 respectively, with different
number of samples used for approximating the expectation for level 1 reasoning. The corresponding number of successful attacks (for
200, 500 and 1000 samples) are 2.6, 3.0 and 3.3.

F.2.2. DEFENSE AGAINST STATE-OF-THE-ART ADVERSARIAL ATTACK METHODS

(a) Against the Parsimonious Attacker18

Since the Parsimonious algorithm is deterministic (assuming that the random seed is fixed), it corresponds to a level-0 pure
strategy, which is equivalent to a mixed strategy with all probability measure concentrated on a single action. Therefore, in
our setting, when D (the defender) is selecting its level-1 strategy in iteration t using R2-B2, it knows exactly the action
(perturbations) that A (the attacker) will select in the current iteration t. To make the setting more practical, we use the
(encoded) image perturbed by A (instead of the encoded perturbations as in the experiments in Section 4.2.1) as the action
of A, x1. Specifically, every time D receives the perturbed image from A, D encodes the image using its VAE, and use the
encoded latent vector (i.e., the mean vector of the encoded latent distribution) as the input from A in the current iteration
(i.e., x1,t). As a result, in every iteration, D naturally gains access to the action of A in the current iteration x1,t and can
thus reason at level 1 by best-responding to x1,t. Therefore, D has natural access to A’s history of selected actions, which,
combined with the fact that the game is constant-sum (which allows D to know A’s payoff by observing D’s own payoff),
satisfies the requirement of perfect monitoring. Note that Parsimonious maximizes the loss (instead of the attack score as
in the experiments in Section 4.2.1) of a test image as the objective of attack, so to be consistent with their algorithm, we
use the negative loss as the payoff function of our level-1 R2-B2 defender. Refer to Fig. 13 for the loss values achieved
by Parsimonious with and without our level-1 R2-B2 defender for some selected images. The losses for different images
are reported individually since they are highly disparate across different images, thus making their average losses hard to
visualize.

(b) Against the BO Attacker
In addition to evaluating the effectiveness of our level-1 R2-B2 defender using the state-of-the-art Parsimonious algorithm
(Section 4.2.2), we also investigate whether our level-1 R2-B2 defender is able to defend against black-box adversarial
attacks using BO, which has recently become popular as a sample-efficient black-box method for adversarial attacks (Ru
et al., 2020). Specifically, as a gradient-free technique to optimize black-box functions, BO can be naturally used to
maximize the attack score (i.e., the output) over the space of adversarial perturbations (i.e., the input). Note that in contrast
to the attacker in Section 4.2.1, the BO attacker here is not aware of the existence of the defender and thus the input to
its GP surrogate only consists of the (encoded) perturbations of the attacker. We adopt two commonly used acquisition
functions for BO: (a) Thompson sampling (TS) which, as a randomized algorithm, corresponds to a level-0 mixed strategy,
and (b) GP-UCB, which represents a level-0 pure strategy. For both types of adversarial attacks, we let our level-1 defender
run the R2-B2-Lite algorithm. In particular, when the attacker uses the GP-UCB acquisition function, in each iteration,
the defender calculates/simulates the action (perturbations) that would be selected by the attacker in the current iteration,
and best-responds to it; when TS is adopted by the attacker as the acquisition function, the defender draws a sample using
the attacker’s randomized level-0 TS strategy in the current iteration, and best-responds to it. Fig. 14 shows the results of
adversarial attacks using the TS and GP-UCB acquisition functions with and without our level-1 R2-B2-Lite defender. As

18https://github.com/snu-mllab/parsimonious-blackbox-attack

https://github.com/snu-mllab/parsimonious-blackbox-attack
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Figure 13. The loss of the Parsimonious algorithm with and without our level-1 R2-B2 defender on some selected images. For the images
on the first three rows, Parsimonious fails to achieve any successful attack; for the images on the last row, our level-1 R2-B2 defender
requires Parsimonious to use a significantly larger number of queries to obtain a successful attack.
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Figure 14. Attack scores achieved by the black-box attacker using BO with the GP-UCB and Thompson sampling acquisition functions,
with and without our level-1 R2-B2-Lite defender. The corresponding number of successful attacks are 70.1, 67.0, 0.8 and 0.7 respectively
(in the order of the figure legend from top to bottom).

demonstrated in the figure, our level-1 R2-B2-Lite defender is able to effectively defend against and almost eliminate the
impact of both types of adversarial attacks (i.e., allow the attacker to succeed for less than once over 150 iterations).

F.3. Multi-Agent Reinforcement Learning

The multi-agent particle environment adopted in our experiment can be found at https://github.com/openai/
multiagent-particle-envs. The state and action of the two predators (referred to as predator 1 and predator 2
for simplicity), are represented by a 14-dimensional vector and a 5-dimensional vector respectively, whereas the state and
action of the prey are represented by a 12-dimensional vector and a 5-dimensional vector correspondingly. For simplicity,
we perform direct policy search using a linear policy space. That is, the policy of each predator is represented by a 14× 5
matrix, which maps a 14-dimensional state vector to a 5-dimensional action vector, thus producing the action to be taken
by the predator according to the current policy when the predator is in a particular state. Similarly, the policy of the prey
corresponds to a 12× 5 matrix, which is able to map a 12-dimensional state vector to a 5-dimensional action vector. To
further simplify the setting and reduce the dimensionality of the policy space, we use rank-1 approximations of the policy
matrices. That is, the 14× 5 policy matrix of each predator is obtained by the outer product of a 14-dimensional vector and
a 5-dimensional vector, whereas the 12× 5 policy matrix of the prey is attained by the outer product of a 12-dimensional
vector and a 5-dimensional vector. As a result, the policy of each predator is represented by 14 + 5 = 19 parameters,
whereas the policy of the prey is characterized by 12 + 5 = 17 parameters. Therefore, the dimension of the input to the
GP surrogate models is 19 + 19 + 17 = 55. For every one of the 55 input dimensions, the search space is [−1, 1]. In each
iteration of the repeated game, after all agents have selected their policy parameters, the agents use their respective policies to
interact in the environment for 50 steps and use their obtained returns (i.e., cumulative rewards) as the corresponding payoff;
every iteration of the repeated game involves 5 independent runs in the environment (with different initializations) using the
selected policy parameters, and the averaged return over the 5 independent runs is reported as the corresponding observed
payoff. For ease of visualization, the returns are clipped and scaled into the range [0, 1]. All agents use random search as the
level-0 strategy due to the high dimension of input action space; refer to Appendix F.2.1a for a detailed explanation about
this choice. The GP hyperparameters are optimized via maximizing the marginal likelihood after every 10 iterations.

https://github.com/openai/multiagent-particle-envs
https://github.com/openai/multiagent-particle-envs
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Figure 15. Illustration of the predator-prey game. Red: predators; green: prey; black: obstacles.


