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Abstract

The growing literature of Federated Learning (FL) has recently inspired Federated
Reinforcement Learning (FRL) to encourage multiple agents to federatively build
a better decision-making policy without sharing raw trajectories. Despite its
promising applications, existing works on FRL fail to I) provide theoretical analysis
on its convergence, and II) account for random system failures and adversarial
attacks. Towards this end, we propose the first FRL framework the convergence
of which is guaranteed and tolerant to less than half of the participating agents
being random system failures or adversarial attackers. We prove that the sample
efficiency of the proposed framework is guaranteed to improve with the number of
agents and is able to account for such potential failures or attacks. All theoretical
results are empirically verified on various RL benchmark tasks.

1 Introduction

Reinforcement learning (RL) has recently been applied to many real-world decision-making problems
such as gaming, robotics, healthcare, etc. [1–3]. However, despite its impressive performances in
simulation, RL often suffers from poor sample efficiency, which hinders its success in real-world
applications [4, 5]. For example, when RL is applied to provide clinical decision support [3, 6, 7],
its performance is limited by the number (i.e., sample size) of admission records possessed by a
hospital, which cannot be synthetically generated [3]. As this challenge is usually faced by many
agents (e.g., different hospitals), a natural solution is to encourage multiple RL agents to share their
trajectories, to collectively build a better decision-making policy that one single agent can not obtain
by itself. However, in many applications, raw RL trajectories contain sensitive information (e.g., the
medical records contain sensitive information about patients) and thus sharing them is prohibited. To
this end, the recent success of Federated Learning (FL) [8–11] has inspired the setting of Federated
Reinforcement Learning (FRL) [12], which aims to federatively build a better policy from multiple
RL agents without requiring them to share their raw trajectories. FRL is practically appealing
for addressing the sample inefficiency of RL in real systems, such as autonomous driving [13],
fast personalization [14], optimal control of IoT devices [15], robots navigation [16], and resource
management in networking [17]. Despite its promising applications, FRL is faced by a number of
major challenges, which existing works are unable to tackle.

Firstly, existing FRL frameworks are not equipped with theoretical convergence guarantee, and thus
lack an assurance for the sample efficiency of practical FRL applications, which is a critical drawback
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due to the high sampling cost of RL trajectories in real systems [4]. Unlike FL where training data
can be collected offline, FRL requires every agent to sample trajectories by interacting with the
environment during learning. However, interacting with real systems can be slow, expensive, or
fragile. This makes it critical for FRL to be sample-efficient and hence highlights the requirement for
convergence guarantee of FRL, without which no assurance on its sample efficiency is provided for
practical applications. To fill this gap, we establish on recent endeavors in stochastic variance-reduced
optimization techniques to develop a variance-reduced federated policy gradient framework, the con-
vergence of which is guaranteed. We prove that the proposed framework enjoys a sample complexity
of O(1/ε5/3) to converge to an ε-stationary point in the single-agent setting, which matches recent
results of variance-reduced policy gradient [18, 19]. More importantly, the aforementioned sample
complexity is guaranteed to improve at a rate of O(1/K2/3) upon the federation of K agents. This
guarantees that an agent achieves a better sample efficiency by joining the federation and benefits
from more participating agents, which are highly desirable in FRL.

Another challenge inherited from FL is that FRL is vulnerable to random failures or adversarial
attacks, which poses threats to many real-world RL systems. For example, robots may behave
arbitrarily due to random hardware issues; clinical data may provide inaccurate records and hence
create misleading trajectories [3]; autonomous vehicles, on which RL is commonly deployed, are
subject to adversarial attacks [20]. As we will show in experiments, including such random failures or
adversary agents in FRL can significantly deteriorate its convergence or even result in unlearnability.
Of note, random failures and adversarial attacks in FL systems are being encompassed by the
Byzantine failure model [21], which is considered as the most stringent fault formalism in distributed
computing [22, 23] – a small fraction of agents may behave arbitrarily and possibly adversarially,
with the goal of breaking or at least slowing down the convergence of the system. As algorithms
proven to be correct in this setting are guaranteed to converge under arbitrary system behavior (e.g.,
exercising failures or being attacked) [9, 24], we study the fault tolerance of our proposed FRL
framework using the Byzantine failure model. We design a gradient-based Byzantine filter on top of
the variance-reduced federated policy gradient framework. We show that, when a certain percentage
(denoted by α < 0.5) of agents are Byzantine agents, the sample complexity of the FRL system is
worsened by only an additive term of O(α4/3/ε5/3) (Section 4). Therefore, when α→ 0, (i.e., an
ideal system with zero chance of failure), the filter induces no impact on the convergence.

Contributions. In this paper, we study the federated reinforcement learning problem with theoretical
guarantee in the potential presence of faulty agents. We introduce Federated Policy Gradient with
Byzantine Resilience (FedPG-BR), the first FRL framework that is theoretically principled and
practically effective for the FRL setting, accounting for random systematic failures and adversarial
attacks. In particular, FedPG-BR (a) enjoys a guaranteed sample complexity which improves with
more participating agents, and (b) is tolerant to the Byzantine fault in both theory and practice.
We discuss the details of problem setting and the technical challenges (Section 3) and provide
theoretical analysis of FedPG-BR (Section 4). We also demonstrate its empirical efficacy on various
RL benchmark tasks (Section 5).

2 Background

Stochastic Variance-Reduced Gradient aims to solve minθ∈Rd [J(θ) , 1
B

∑B
i=1 Ji(θ)]. Under

the common assumption of all function components Ji being smooth and convex in θ, gradient
descent (GD) achieves linear convergence in the number of iterations of parameter updates [25, 26].
However, every iteration of GD requires B gradient computations, which can be expensive for large
B. To overcome this problem, stochastic GD (SGD) [27, 28] samples a single data point per iteration,
which incurs lower per-iteration cost yet results in a sub-linear convergence rate [29]. For a better
trade-off between convergence rate and per-iteration computational cost, the stochastic variance-
reduced gradient (SVRG) method has been proposed, which reuses past gradient computations to
reduce the variance of the current gradient estimate [30–33]. More recently, stochastically controlled
stochastic gradient (SCSG) has been proposed for convex [34] or smooth non-convex objective
function [35], to further reduce the computational cost of SVRG especially when required ε is small
in finding ε-approximate solution. Refer to Appendix A.1 for more details on SVRG and SCSG.

Reinforcement Learning (RL) can be modelled as a discrete-time Markov Decision Process
(MDP) [36]: M , {S,A,P,R, γ, ρ}. S represents the state space, A is the action space, P(s′|s, a)
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defines the transition probability from state s to s′ after taking action a,R(s, a) : S × A 7→ [0, R]
is the reward function for state-action pair (s, a) and some constant R > 0, γ ∈ (0, 1) is the dis-
count factor, and ρ is the initial state distribution. An agent’s behavior is controlled by a policy
π, where π(a|s) defines the probability that the agent chooses action a at state s. We consider
episodic MDPs with trajectory horizon H . A trajectory τ , {s0, a0, s1, a1, ..., sH−1, aH−1} is a
sequence of state-action pairs traversed by an agent following any stationary policy, where s0 ∼ ρ.
R(τ) ,

∑H−1
t=0 γtR (st, at) gives the cumulative discounted reward for a trajectory τ .

Policy Gradient (PG) methods have achieved impressive successes in model-free RL [37, 38, ,etc.].
Compared with deterministic value-function based methods such as Q-learning, PG methods are
generally more effective in high-dimensional problems and enjoy the flexibility of stochasticity.
In PG, we use πθ to denote the policy parameterized by θ ∈ Rd (e.g., a neural network), and
p(τ |πθ) to represent the trajectory distribution induced by policy πθ. For brevity, we use θ to
denote the corresponding policy πθ. The performance of a policy θ can be measured by J(θ) ,
Eτ∼p(·|θ)[R(τ)|M ]. Taking the gradient of J(θ) with respect to θ gives

∇θJ(θ) =

∫
τ

R(τ)∇θp(τ | θ)dτ = Eτ∼p(·|θ) [∇θ log p(τ | θ)R(τ) |M ] (1)

Then, the policy θ can be optimized by gradient ascent. Since computing (1) is usually pro-
hibitive, stochastic gradient ascent is typically used. In each iteration, we sample a batch of
trajectories {τi}Bi=1 using the current policy θ, and update the policy by θ ← θ + η∇̂BJ (θ),
where η is the step size and ∇̂BJ(θ) is an estimate of (1) using the sampled trajectories {τi}Bi=1:
∇̂BJ(θ) = 1

B

∑B
i=1∇θ log p (τi | θ)R (τi). The most common policy gradient estimators, such as

REINFORCE [39] and GPOMDP [40], can be expressed as

∇̂BJ(θ) =
1

B

B∑
i=1

g(τi|θ) (2)

where τi = {si0, ai0, si1, ai1, . . . , siH−1, a
i
H−1} and g(τi|θ) is an unbiased estimate of ∇θ log p(τi |

θ)R(τi). We provide formal definition of g(τi|θ) in Appendix A.2.

SVRPG. A key issue for PG is the high variance of the estimator based on stochastic gradients (2)
which results in slow convergence. Similar to SGD for finite-sum optimization, PG requires O(1/ε2)
trajectories to find an ε-stationary point such that E[‖∇J(θ)‖2] ≤ ε [19]. That is, PG typically
requires a large number of trajectories to find a well-performing policy. To reduce the variance of
the gradient estimator in PG (2), SVRG has been applied to policy evaluation [41, 42] and policy
optimization [43]. The work of Papini et al. [18] has adapted the theoretical analysis of SVRG to
PG to introduce the stochastic variance-reduced PG (SVRPG) algorithm. More recently, Xu et al.
[19] has refined the analysis of SVRPG [18] and shown that SVRPG enjoys a sample complexity
of O(1/ε5/3). These works have demonstrated both theoretically and empirically that SVRG is a
promising approach to reduce the variance and thus improve the sample efficiency of PG methods.

Fault tolerance refers to the property that enables a computing system to continue operating properly
without interruption when one or more of its workers fail. Among the many fault formalisms, the
Byzantine failure model has a rich history in distributed computing [22, 23] and is considered as
the most stringent fault formalism in fault-tolerant FL system design [9, 24]. Originated from the
Byzantine generals problem [21], the Byzantine failure model allows an α-fraction (typical α < 0.5)
of workers to behave arbitrarily and possibly adversarially, with the goal of breaking or at least
slowing down the convergence of the algorithm. As algorithms proven to be resilient to the Byzantine
failures are guaranteed to converge under arbitrary system behavior (hence fault-tolerant) [22, 23],
it has motivated a significant interest in providing distributed supervised learning with Byzantine
resilience guarantees [e.g., 44–49]. However, there is yet no existing work studying the correctness
of Byzantine resilience in the context of FRL.

3 Fault-tolerant federated reinforcement learning

3.1 Problem statement

Our problem setting is similar to that of FL [8] where a central server is assumed to be trustworthy
and governs the federation of K distributed agents k ∈ {1, ...,K}. In each round t ∈ {1, ..., T},
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the central server broadcasts its parameter θt0 to all agents. Each agent then independently samples
a batch of trajectories {τ (k)

t,i }
Bt
i=1 by interacting with the environment using the obtained policy,

e.g., {τ (k)
t,i }

Bt
i=1 ∼ p(·|θt0). However, different from FL where each agent computes the parameter

updates and sends the updated parameter to the server for aggregation [8], agents in our setup do
not compute the updates locally, but instead send the gradient computed w.r.t. their local trajectories
µ

(k)
t , ∇̂BtJ(θt0) directly to the server. The server then aggregates the gradients, performs a policy

update step, and starts a new round of federation.

Of note, every agent including the server is operating in a separate copy of the MDP. No exchange of
raw trajectories is required, and no communication between any two agents is allowed. To account
for potential failures and attacks, we allow an α-fraction of agents to be Byzantine agents with
α ∈ [0, 0.5). That is, in each round t, a good agent always sends its computed µ(k)

t back to the server,
while a Byzantine agent may return any arbitrary vector.1 The server has no information regarding
whether Byzantine agents exist and cannot track the communication history with any agent. In every
round, the server can only access the K gradients received from agents, and thereby uses them to
detect Byzantine agents so that it only aggregates the gradients from those agents that are believed to
be non-Byzantine agents.

Notations. Following the notations of SCSG [35], we use θt0 to denote the server’s initial parameter
in round t and θtn to represent the updated parameter at the n-th step in round t. τ (k)

t,i represents agent
k’s i-th trajectory sampled using θt0. ‖ · ‖ denotes Euclidean norm and Spectral norms for vectors
and matrices, respectively. O(·) hides all constant terms.

3.2 Technical challenges

There is an emerging interest in Byzantine-resilient distributed supervised learning [e.g., 44–50].
However, a direct application of those works to FRL is not possible due to that the objective function
J(θ) of RL, which is conditioned on τ ∼ p(·|θ), is different from the supervised classification loss
seen in the aforementioned works, resulting in the following issues:

Non-stationarity: unlike in supervised learning, the distribution of RL trajectories is affected by
the value of the policy parameter which changes over time (e.g., τ ∼ p(·|θ)). We deal with the
non-stationarity using importance sampling [51] (Section 3.3).

Non-concavity: the objective function J(θ) is typically non-concave. To derive the theoretical
results accounting for the non-concavity, we need the L-smoothness assumption on J(θ), which is a
reasonable assumption and commonly made in the literature [52] (Section 4). Hence we aim to find
an ε-approximate solution (i.e., a commonly used objective in non-convex optimization):

Definition 1 (ε-approximate solution). A point θ is called ε-stationary if ‖∇J(θ)‖2 ≤ ε. Moreover,
the algorithm is said to achieve an ε-approximate solution in t rounds if E[‖∇J(θ)‖2] ≤ ε, where
the expectation is with respect to all randomness of the algorithm until round t.

High variance in gradient estimation: the high variance in estimating (2) renders the FRL system
vulnerable to variance-based attacks which conventional Byzantine-resilient optimization works
fail to defend [47]. To combat this issue, we adapt the SCSG optimization [35] to federated policy
gradient for a refined control over the estimation variance, hence enabling the following assumption
which we exploit to design our Byzantine filtering step:

Assumption 2 (On bounded variance of the gradient estimator). There is a constant σ such that
‖g(τ |θ)−∇J(θ)‖ ≤ σ for any τ ∼ p(τ |θ) for all policy πθ.

Remark. Assumption 2 is also seen in Byzantine-resilient optimization [46, 48] and may be relaxed
to E‖g(τ |θ)−∇J(θ)‖ ≤ θ which is a standard assumption commonly used in stochastic non-convex
optimization [e.g. 35, 53]. In this work, the value of σ is the maximum difference between optimal
gradient ∇J(θ) and the gradient estimate g(τ |θ) w.r.t. any trajectories induced by policy πθ. For
complex real-world problems with continuous, high-dimensional controls, σ may be upper-bounded,
provided that the MDP is Lipschitz continuousPirotta et al. [52]. The deviation can be obtained by
referring to Proposition 2 of Pirotta et al. [52].2

1A Byzantine agent may not be Byzantine in every round.
2The value of σ can be estimated at the server.
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3.3 Algorithm description

The pseudocode for the proposed Federated Policy Gradient with Byzantine Resilience (FedPG-BR)
is shown in Algorithm 1. FedPG-BR starts with a randomly initialized parameter θ̃0 at the server.
At the beginning of the t-th round, the server keeps a snapshot of its parameter from the previous
round (i.e., θt0 ← θ̃t−1) and broadcasts this parameter to all agents (line 3). Every (good) agent
k samples Bt trajectories {τ (k)

t,i }
Bt
i=1 using the policy θt0 (line 5), computes a gradient estimate

µ
(k)
t , 1/Bt

∑Bt
i=1 g(τ

(k)
t,i |θ

t
0) where g is either the REINFORCE or the GPOMDP estimator (line

6), and sends µ(k)
t back to the server. For a Byzantine agent, it can send an arbitrary vector instead

of the correct gradient estimate. After all gradients are received, the server performs the Byzantine
filtering step, and then computes the batch gradient µt by averaging those gradients that the server
believes are from non-Byzantine agents (line 7). For better clarity, we present the subroutine FedPG-
Aggregate for Byzantine filtering and gradient aggregation in Algorithm 1.1, which we discuss in
detail separately.

The aggregation is then followed by the SCSG inner loop [35] with Nt steps, where Nt is sampled
from a geometric distribution with parameter Bt

Bt+bt
(line 8). At step n, the server independently

samples bt (bt � Bt) trajectories {τ tn,j}
bt
j=1 using its current policy θtn (line 10), and then updates

the policy parameter θtn based on the following semi-stochastic gradient (lines 11 and 12):

vtn ,
1

bt

bt∑
j=1

[
g(τ tn,j |θ

t
n)− ω(τ tn,j |θ

t
n,θ

t
0)g(τ tn,j |θ

t
0)
]

+ µt. (3)

The last two terms serve as a correction to the gradient estimate to reduce variance and improve the
convergence rate of Algorithm 1. Of note, the semi-stochastic gradient above (3) differs from that
used in SCSG due to the additional term of ω(τ |θtn,θ

t
0) , p(τ |θt0)/p(τ |θtn). This term is known as

the importance weight from p(τ |θtn) to p(τ |θt0) to account for the aforementioned non-stationarity
of the distribution in RL [18, 19]. In particular, directly computing g(τ tn,j |θ

t
0) results in a biased

estimation because the trajectories {τ tn,j}
bt
j=1 are sampled from the policy θtn instead of θt0. We prove

in Lemma 8 (Appendix E) that this importance weight results in an unbiased estimate of the gradient,
i.e., Eτ∼p(·|θn)[ω(τ |θn,θ0)g(τ |θ0)] = ∇J(θ0).

Here we describe the details of our Byzantine filtering step (i.e., the subroutine FedPG-Aggregate
in Algorithm 1.1), which is inspired by the works of Alistarh et al. [46] and Khanduri et al. [48] in
distributed supervised learning. In any round t, we use G to denote the set of true good agents and
use Gt to denote the set of agents that are believed to be good by the server. Our Byzantine filtering

Algorithm 1 FedPG-BR

1: Input: θ̃0 ∈ Rd, batch size Bt, mini batch size bt, step size ηt
2: for t = 1 to T do
3: θt0 ← θ̃t−1 ; broadcast to all agents
4: for k = 1 to K do
5: Sample Bt trajectories {τ (k)

t,i }
Bt
i=1 from p(·|θt0)

6: µ
(k)
t ,

{
1
Bt

∑Bt
i=1 g(τ

(k)
t,i |θ

t
0) for k ∈ G

∗ for k /∈ G
; push µ(k)

t to server

7: µt ← FedPG-Aggregate({µ(k)
t }Kk=1)

8: Sample Nt ∼ Geom( Bt
Bt+bt

)
9: for n = 0 to Nt − 1 do

10: Sample bt trajectories {τ tn,j}
bt
j=1 from p(·|θtn)

11: vtn , 1
bt

∑bt
j=1[g(τ tn,j |θ

t
n)− ω(τ tn,j |θ

t
n,θ

t
0)g(τ tn,j |θ

t
0)] + µt

12: θtn+1 = θtn + ηtv
t
n

13: θ̃t ← θtNt
14: Output: θ̃a uniformly randomly picked from {θ̃t}Tt=1
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Algorithm 1.1 FedPG-Aggregate

1: Input: Gradient estimates from K agents in round t: {µ(k)
t }Kk=1, variance bound σ, filtering

threshold Tµ , 2σ
√

V
Bt

, where V , 2 log(2K
δ ) and δ ∈ (0, 1)

2: S1 , {µ(k)
t } where k ∈ [K] s.t.

∣∣∣{k′ ∈ [K] :
∥∥∥µ(k′)

t − µ(k)
t

∥∥∥ ≤ Tµ

}∣∣∣ > K
2

3: µmom
t ← argmin

µ
(k̃)
t

‖µ(k̃)
t −mean(S1)‖ where k̃ ∈ S1

4: R1: Gt ,
{
k ∈ [K] :

∥∥∥µ(k)
t − µmom

t

∥∥∥ ≤ Tµ

}
5: if |Gt| < (1− α)K then
6: S2 , {µ(k)

t } where k ∈ [K] s.t.
∣∣∣{k′ ∈ [K] :

∥∥∥µ(k′)
t − µ(k)

t

∥∥∥ ≤ 2σ
}∣∣∣ > K

2

7: µmom
t ← argmin

µ
(k̃)
t

‖µ(k̃)
t −mean(S2)‖ where k̃ ∈ S2

8: R2: Gt ,
{
k ∈ [K] :

∥∥∥µ(k)
t − µmom

t

∥∥∥ ≤ 2σ
}

9: Return: µt , 1
|Gt|
∑
k∈Gt µ

(k)
t

consists of two filtering rules denoted by R1 (lines 2-4) and R2 (lines 6-8). R2 is more intuitive
to understand, so we start by introducing R2. Firstly, in line 6, the server constructs a set S2 of
vector medians [46] where each element of S2 is chosen from {µ(k)

t }Kk=1 if it is close (within 2σ
in Euclidean distance) to more than K/2 elements. Next, the server finds a Mean of Median vector

µmom
t from S2, which is defined as any µ(k̃)

t ∈ S2 that is the closet to the mean of the vectors in S2.
After µmom

t is selected, the server can construct the set Gt by filtering out any µ(k)
t whose distance to

µmom
t is larger than 2σ (line 8). This filtering rule is designed based on Assumption 2 which implies

that the maximum distance between any two good agents is 2σ, and our assumption that at least half
of the agents are good (i.e., α < 0.5). We show in Appendix D that under these two assumptions, R2
guarantees that all good agents are included in Gt (i.e., |Gt| ≥ (1− α)K). We provide a graphical
illustration (Fig. 4 in Appendix D) on that if any Byzantine agent is included in Gt, its distance to
the true gradient ∇J(θt0) is at most 3σ, which ensures that its impact on the algorithm is limited.
Note that the pairwise computation among the weights of all the agents can be implemented using
the Euclidean Distance Matrix Trick [54].

R1 (lines 2-4) is designed in a similar way: R1 ensures that all good agents are highly likely to be
included in Gt by exploiting Lemma 14 (Appendix E) to guarantee that with high probability, all good
agents are concentrated in a smaller region. That is, define V , 2 log(2K/δ) and δ ∈ (0, 1), then
with probability of≥ 1− δ, the maximum distance between any two good agents is Tµ , 2σ

√
V/Bt.

Having all good agents in a smaller region improves the filtering strategy, because it makes the
Byzantine agents less likely to be selected and reduces their impact even if they are selected. Therefore,
R1 is applied first such that if R1 fails to include all good agents in Gt (line 4) which happens with
probability < δ, R2 is then employed as a backup to ensure that Gt always include all good agents.
Therefore, these two filtering rules ensure in any round t that (a) gradients from good agents are never
filtered out, and that (b) if gradients from Byzantine agents are not filtered out, their impact is limited
since their maximum distance to∇J(θt0) is bounded by 3σ.

4 Theoretical results

Here, we firstly put in place a few assumptions required for our theoretical analysis, all of which are
common in the literature.
Assumption 3 (On policy derivatives). Let πθ(a|s) be the policy of an agent at state s. There exist
constants G,M > 0 s.t. the log-density of the policy function satisfies, for all a ∈ A and s ∈ S

|∇θ log πθ(a|s)| ≤ G, ‖∇2
θ log πθ(a|s)‖ ≤M, ∀a ∈ A,∀s ∈ S

Assumption 3 provides the basis for the smoothness assumption on the objective function J(θ)
commonly used in non-convex optimization [32, 33] and also appears in Papini et al. [18], Xu et al.
[19]. Specifically, Assumption 3 implies:
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Proposition 4 (On function smoothness). Under Assumption 3, J(θ) isL-smooth withL , HR(M+
HG2)/(1 − γ). Let g(τ |θ) be the REINFORCE or GPOMDP gradient estimators. Then for all
θ,θ1,θ2 ∈ Rd, it holds that

‖g(τ |θ)‖ ≤ Cg, ‖g (τ | θ1)− g (τ | θ2)‖ ≤ Lg ‖θ1 − θ2‖

where Lg , HM(R+ |Cb|)/(1− γ), Cg , HG(R+ |Cb|)/(1− γ) and Cb is the baseline reward.

Proposition 4 is important for deriving a fast convergence rate and its proof can be found in Xu et al.
[19]. Next, we need an assumption on the variance of the importance weights (Section 3).
Assumption 5 (On variance of the importance weights). There exists a constant W <∞ such that
for each policy pairs in Algorithm 1, it holds

Var(ω(τ |θ1,θ2)) ≤W, ∀θ1,θ2 ∈ Rd, τ ∼ p(·|θ1)

Assumption 5 has also been made by Papini et al. [18], Xu et al. [19]. Now we present the convergence
guarantees for our FedPG-BR algorithm:
Theorem 6 (Convergence of FedPG-BR). Assume uniform initial state distribution across agents,
and the gradient estimator is set to be the REINFORCE or GPOMDP estimator. Under Assumptions
2, 3, and 5, if we choose ηt ≤ 1

2ΨB
2/3
t

, bt = 1, and Bt = B ≥ 4ΦL−2 where Φ , Lg + C2
gCw,

Ψ , (L(Lg + C2
gCw))1/3, L,Lg, Cg are defined in Proposition 4 and Cw is defined in Lemma 9,

δ ∈ (0, 1) such that e
δBt

2(1−2δ) ≤ 2K
δ ≤ e

Bt
2 and δ ≤ 1

5KBt
, then the output θ̃a of Algorithm 1 satisfies

E[‖∇J(θ̃a)‖2] ≤
2Ψ
[
J(θ̃

∗
)− J(θ̃0)

]
TB1/3

+
8σ2

(1− α)2KB
+

96α2σ2V

(1− α)2B

where 0 ≤ α < 0.5 and θ̃
∗

is a global maximizer of J .

This theorem leads to many interesting insights. When K = 1, α = 0, Theorem 6 reduces to
E‖∇J(θ̃a)‖2 ≤ 2Ψ[J(θ̃

∗
) − J(θ̃0)]/TB1/3 + 8σ2/B. The second term here O(1/B), which

also shows up in SVRPG [18, 19], results from the full gradient approximation in Equation (2) in
each round. In this case, our theorem implies that E‖∇J(θ̃a)‖2 = O(Ψ[J(θ̃

∗
) − J(θ̃0)]/TB1/3)

which is consistent with SCSG for L-smooth non-convex objective functions [35]. Moreover,
using E[Traj(ε)] to denote the expected number of trajectories required by each agent to achieve
E[‖∇J(θ̃a)‖2] ≤ ε, Theorem 6 leads to:
Corollary 7 (Sample complexity of FedPG-BR). Under the same assumptions as Theorem 6, let
ε > 0, we have: (i) E[Traj(ε)] = O( 1

ε5/3K2/3 + α4/3

ε5/3
); (ii) When α = 0, we have E[Traj(ε)] =

O( 1
ε5/3K2/3 ); (iii) When K=1, we have E[Traj(ε)] = O( 1

ε5/3
)

We present a straightforward comparison of the sample complexity of related works in Table 1. Both
REINFORCE and GPOMDP have a sample complexity of O(1/ε2) since they use stochastic gradient-
based optimization. Xu et al. [19] has made a refined analysis of SVRPG to improve its sample

Table 1: Sample complexities of relevant works to achieve E‖∇J(θ)‖2 ≤ ε.

SETTINGS METHODS COMPLEXITY

K = 1

REINFORCE [39] O(1/ε2)
GPOMDP [40] O(1/ε2)
SVRPG [18] O(1/ε2)
SVRPG [19] O(1/ε5/3)
FedPG-BR O(1/ε5/3)

K > 1, α = 0 FedPG-BR O( 1
ε5/3K2/3 )

K > 1, α > 0 FedPG-BR O( 1
ε5/3K2/3 + α4/3

ε5/3
)
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complexity from O(1/ε2) [18] to O(1/ε5/3). Corollary 7 (iii) reveals that the sample complexity of
FedPG-BR in the single-agent setup agrees with that of SVRPG derived by Xu et al. [19].

When K > 1, α = 0, Corollary 7 (ii) implies that the total number of trajectories required by
each agent is upper-bounded by O(1/(ε5/3K2/3)). This result gives us the theoretical grounds to
encourage more agents to participate in the federation, since the number of trajectories each agent
needs to sample decays at a rate of O(1/K2/3). This guaranteed improvement in sample efficiency
is highly desirable in practical systems with a large number of agents.

Next, for a more realistic system where an α-fraction (α > 0) of the agents are Byzantine agents,
Corollary 7 (i) assures us that the total number of trajectories required by each agent will be increased
by only an additive term of O(α4/3/ε5/3). This term is unavoidable due to the presence of Byzantine
agents in FRL systems. However, the bound implies that the impact of Byzantine agents on the
overall convergence is limited, which aligns with the discussions on our Byzantine filtering strategy
(Section 3.3), and will be empirically verified in our experiments. Moreover, the impact of Byzantine
agents on the convergence vanishes when α → 0. That is, when the system is ideal (α = 0), our
Byzantine filtering step induces no effect on the convergence.

5 Experiments

We evaluate the empirical performances of FedPG-BR with and without Byzantine agents on different
RL benchmarks, including CartPole balancing [55], LunarLander, and the 3D continuous locomotion
control task of Half-Cheetah [56]. In all experiments, we measure the performance online such that in
each iteration, we evaluate the current policy of the server by using it to independently interact with
the test MDP for 10 trajectories and reporting the mean returns. Each experiment is independently
repeated 10 times with different random seeds and policy initializations, both of which are shared
among all algorithms for fair comparisons. The results are averaged over the 10 independent runs
with 90% bootstrap confidence intervals. Due to space constraints, some experimental details are
deferred to Appendix F.

Performances in ideal systems with α = 0. We firstly evaluate the performances of FedPG-BR
in ideal systems with α = 0, i.e., no Byzantine agents. We compare FedPG-BR (K=1, 3, 10) with
vanilla policy gradient using GPOMDP3 and SVRPG. The results in all three tasks are plotted in Fig. 1.
The figures show that FedPG-BR (K = 1) and SVRPG perform comparably, both outperforming
GPOMDP. This aligns with the results in Table 1 showing that FedPG-BR (K=1) and SVRPG share
the same sample complexity, and both are provably more sample-efficient than GPOMDP. Moreover,
the performance of FedPG-BR is improved significantly with the federated of only K = 3 agents,
and improved even further when K = 10. This corroborates our theoretical insights implying that the
federation of more agents (i.e., larger K) improves the sample efficiency of FedPG-BR (Section 4),
and verifies the practical performance benefit offered by the participation of more agents.
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Figure 1: Performance of FedPG-BR in ideal systems with α = 0 for the three tasks.

Performances in practical systems with α > 0. Next, we investigate the impact of Byzantine
agents (i.e., random failures or adversarial attacks) on the sample efficiency, which is critical for the
practical deployment of FRL algorithms. In this experiment, we use K = 10 agents among which
3 are Byzantine agents, and we simulate different types of Byzantine failures: (a) Random Noise
(RN): each Byzantine agent sends a random vector to the server; (b) Random Action (RA): every
Byzantine agent ignores the policy from the server and takes actions randomly, which is used to

3Since GPOMDP has been repeatedly found to be comparable to or better than REINFORCE [18, 19].
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simulate random system failures (e.g., hardware failures) and results in false gradient computations
since the trajectories are no longer sampled according to the policy; (c) Sign Filliping (SF): each
Byzantine agent computes the correct gradient but sends the scaled negative gradient (multiplied
by −2.5),which is used to simulate adversarial attacks aiming to manipulate the direction of policy
update at the server.

For comparison, we have adapted both GPOMDP and SVRPG to the FRL setting (pseudocode is
provided in Appendix A.3). Fig. 2 shows the results using the HalfCheetah task. We have also
included the performances of GPOMDP, SVRPG and FedPG-BR in the single-agent settting (K=1)
as dotted-line (mean value of 10 independent runs) for reference. The figures show that for both
GPOMDP and SVRPG, the 3 Byzantine agents cause the performance of their federated versions
to be worse than that in the single-agent setting. Particularly, RA agents (middle figure) render
GPOMDP and SVRPG unlearnable, i.e., unable to converge at all. In contrast, our FedPG-BR
is robust against all three types of Byzantine failures. That is, FedPG-BR (K = 10 B = 3) with
3 Byzantine agents still significantly outperforms the single-agent setting, and more importantly,
performs comparably to FedPG-BR (K=10) with 10 good agents. This is because our Byzantine
filtering strategy can effectively filter out those Byzantine agents. These results demonstrate that even
in practical systems which are subject to random failures or adversarial attacks, FedPG-BR is still
able to deliver superior performances. This provides an assurance on the reliability of our FedPG-BR
algorithm to promote its practical deployment, and significantly improves the practicality of FRL.
The results for the CartPole and LunarLander tasks, which yield the same insights as discussed here,
can be found in Appendix G.

Performance of FedPG-BR against FedPG attack. We have discussed (Section 3.3) and shown
through theoretical analysis (Section 4) that even when our Byzantine filtering strategy fails, the
impact of the Byzantine agents on the performance of our algorithm is still limited. Here we verify
this empirically. To this end, we design a new type of Byzantine agents who have perfect knowledge
about our Byzantine filtering strategy, and call it FedPG attacker. The goal of FedPG attackers are to
collude with each other to attack our algorithm without being filtered out. To achieve this, FedPG
attackers firstly estimate∇J(θt0) using the mean of their gradients µ̄t, and estimate σ by calculating
the maximum Euclidean distance between the gradients of any two FedPG attackers as 2σ̄. Next, all
FedPG attackers send the vector µ̄t + 3σ̄ to the server. Recall we have discussed in Section 3.3 that if
a Byzantine agent is not filtered out, its distance to the true gradient∇J(θt0) is at most 3σ. Therefore,
if µ̄t and σ̄ are estimated accurately, the vectors from the FedPG attackers can exert negative impact
on the convergence while still evading our Byzantine filtering.
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Figure 2: Performance of FedPG-BR in practical systems with α > 0 for HalfCheetah. Each subplot
corresponds to a different type of Byzantine failure exercised by the 3 Byzantine agents.
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Figure 3: Performance of FedPG-BR in practical systems against FedPG attack.
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We again use K = 10 agents, among which 3 are FedPG attackers. The results (Fig. 3) show that in
all three tasks, even against such stong attackers with perfect knowledge of our Byzantine filtering
strategy, FedPG-BR (K=10 B=3) still manages to significantly outperform FedPG-BR (K=1) in
the single-agent setting. Moreover, the performance of FedPG-BR (K=10 B=3) is only marginally
worsened compared with FedPG-BR (K=10) with 10 good agents. This corroborates our theoretical
analysis showing that although we place no assumption on the gradients sent by the Byzantine agents,
they only contribute an additive term of O(α4/3/ε5/3) to the sample complexity (Section 4). These
results demonstrate the empirical robustness of FedPG-BR even against strong attackers, hence
further highlighting its practical reliability.

6 Conclusion and future work

Federation is promising in boosting the sample efficiency of RL agents, without sharing their
trajectories. Due to the high sampling cost of RL, the design of FRL systems appeals for theoretical
guarantee on its convergence which is, however, vulnerable to failures and attacks in practical setup,
as demonstrated. This paper provides the theoretical ground to study the sample efficiency of FRL
with respect to the number of participating agents, while accounting for faulty agents. We verify the
empirical efficacy of the proposed FRL framework in systems with and without different types of
faulty agents on various RL benchmarks.

Variance control is the key to exploiting Assumption 2 on the bounded variance of PG estimators
in our filter design. As a result, our framework is restricted to the variance-reduced policy gradient
methods. Intuitively, it is worth studying the fault-tolerant federation of other policy optimization
methods. Another limitation of this work is that agents are assumed to be homogeneous, while in
many real-world scenarios, RL agents are heterogeneous. Therefore, it would be interesting to explore
the possibility of heterogeneity of agents in fault-tolerant FRL in future works. Moreover, another
interesting future work is to apply our Byzantine filtering strategy to other federated sequential
decision-making problems such as federated bandit [57–59] and federated/collaborative Bayesian
optimization [60–62], as well as other settings of collaborative multi-party ML [63–75], to equip
them with theoretically guaranteed fault tolerance.
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A More on the background

A.1 SVRG and SCSG

Here we provide the pseudocode for SVRG (Algorithm 2) and SCSG (Algorithm 3) seen in Lei et al.
[35]. The idea of SVRG (Algorithm 2) is to reuses past full gradient computations (line 3) to reduce
the variance of the current stochastic gradient estimate (line 7) before the parameter update (line
8). Note that N = 1 corresponds to a GD step (i.e., v(j)

k−1 ← gj in line 7). For N > 1, v(j)
k−1 is the

corrected gradient in SVRG and is an unbiased estimate of the true gradient∇J(θ). SVRG achieves
linear convergence O(1/T ) using the semi-stochastic gradient.

Algorithm 2 SVRG

1: Input: Number of stages T , initial iteratre θ̃0, number of gradient steps N , step size η
2: for t = 1 to T do
3: gt ← ∇J(θ̃t−1) = 1

n

∑n
i=1∇Ji(θ̃t−1)

4: θ
(t)
0 ← θ̃t−1

5: for k = 1 to N do
6: Randomly pick ik ∈ [n]

7: v
(t)
k−1 ← ∇Jik(θ

(t)
k−1)−∇Jik(θ

(t)
0 ) + gt

8: θ
(t)
k ← θ

(t)
k−1 − ηtv

(t)
k−1

9: θ̃t ← θ
(t)
Nt

10: Output: θ̃T (Convex case) or θ̃t uniformly picked from {θ̃t}Tt=1 (Non-Convex case)

More recently, Stochastically Controlled Stochastic Gradient (SCSG) has been proposed [34], to
further reduce the computational cost of SVRG. The key difference is that SCSG (Algorithm 3)
considers a sequence of time-varying batch sizes (Bt and bt) and employs geometric sampling to
generate the number of parameter update steps Nt in each iteration (line 6), instead of fixing the
batch sizes and the number of updates as done in SVRG. Particularly when finding an ε-approximate
solution (Definition 1) for optimizing smooth non-convex objectives, Lei et al. [35] proves that
SCSG is never worse than SVRG in convergence rate and significantly outperforms SVRG when the
required ε is small.

Algorithm 3 SCSG for smooth non-convex objectives

1: Input: Number of stages T , initial iteratre θ̃0, batch size Bt, mini-batch size bt, step size ηt
2: for t = 1 to T do
3: Uniformly sample a batch It ⊂ {1, · · · , n} with |It| = Bt
4: gt ← ∇JIt(θ̃t−1)

5: θ
(t)
0 ← θ̃t−1

6: Generate Nt ∼ Geom(Bt/(Bt + bt))
7: for k = 1 to Nt do
8: Randomly pick Ĩk−1 ⊂ [n] with |Ĩk−1| = bt
9: v

(t)
k−1 ← ∇JĨk−1

(θ
(t)
k−1)−∇JĨk−1

(θ
(t)
0 ) + gt

10: θ
(t)
k ← θ

(t)
k−1 + ηtv

(t)
k−1

11: θ̃t ← θ
(t)
Nt

12: Output: θ̃T (P-L case) or sample θ̃
∗
T from {θ̃t}Tt=1 with P (θ̃

∗
T = θ̃t) ∝ ηtBt/bt (Smooth case)

As a member of the SVRG-like algorithms, SCSG enjoys the same convergence rate of SVRG while
being computationally cheaper than SVRG for tasks with small ε requirements [34], which is highly
desired in RL, hence the motivation of FedPG-BR to adapt SCSG.
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A.2 Gradient estimator

Use g(τ |θ) to denote the unbiased estimator to the true gradient J(θ). The common gradient
estimators are the REINFORCE and the GPOMDP estimators, which are considered as baseline
estimators in [18] and [19]. The REINFORCE [39]:

g(τ |θ) =

[
H−1∑
h=0

∇θ log πθ(ah | sh)

][
H−1∑
h=0

γhR(sh, ah)− Cb

]
And the GPOMDP [40]

g(τ |θ) =

H−1∑
h=0

[
h∑
t=0

∇θ log πθ(at | st)

]
(γhr(sh, ah)− Cbh)

where Cb and Cbh are the corresponding baselines. Under Assumption 3, whether we use the
REINFORCE or the GPOMDP estimator, Proposition 4 holds [18, 19].

Algorithm 4 GPOMDP (for federation of K agents)

Input: number of iterations T , batch size B, step size η, initial parameter θ̃0 ∈ Rd
for t = 1 to T do
θt ← θ̃t−1 ; broadcast to agents
for k = 1 to K do

Sample B trajectories {τ (k)
t,i } from p(·|θt)

µ
(k)
t = 1

B

∑B
i=1 g(τ

(k)
t,i |θ

t) ; push µ(k)
t to server

µt = 1
K

∑K
k=1 µ

(k)
t

θ̃t ← θt + ηµt
Output θout: uniformly randomly picked from {θ̃t}Tt=1

A.3 Federated GPOMDP and SVRPG

Closely following the problem setting of FedPG-BR, we adapt both GPOMDP and SVRPG to the
FRL setting. The pseudocode is shown in Algorithm 4 and Algorithm 5.

Algorithm 5 SVRPG (for federation of K agents)

Input: number of epochs T , epoch size N , batch size B, mini-batch size b, step size η, initial
parameter θ̃0 ∈ Rd
for t = 1 to T do
θt0 ← θ̃t−1 ; broadcast to agents
for k = 1 to K do

Sample B trajectories {τ (k)
t,i } from p(·|θt0)

µ
(k)
t = 1

B

∑B
i=1 g(τ

(k)
t,i |θ

t
0) ; push µ(k)

t to server

µt = 1
K

∑K
k=1 µ

(k)
t

for n = 0 to N − 1 do
Sample b trajectories {τ tn,j} from p(·|θtn)

vtn = 1
b

∑b
j=1[g(τ tn,j |θ

t
n)− ω(τ tn,j |θ

t
n,θ

t
0)g(τ tn,j |θ

t
0)] + µt

θtn+1 = θtn + ηvtn
θ̃t ← θtN

Output θout: uniformly randomly picked from {θ̃t}Tt=1

B Proof of Theorem 6

In our proof, we follow the suggestion from Lei et al. [35] to set bt = 1 to derive better theoretical
results. Refer to Section F in this appendix for the value of bt used in our experiments.
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Proof. From the L-smoothness of the objective function J(θ), we have

Eτtn [J(θtn+1)] ≥ Eτtn

[
J(θtn) + 〈∇J(θtn),θtn+1 − θtn〉 −

L

2
‖θtn+1 − θtn‖2

]
= J(θtn) + ηt〈Eτtn [vtn],∇J(θtn)〉 − Lη2

t

2
Eτtn [‖vtn‖2]

≥ J(θtn) + ηt〈∇J(θtn) + et,∇J(θtn)〉

− Lη2
t

2
[(2Lg + 2C2

gCw)‖θtn − θt0‖2 + 2‖∇J(θtn)‖2 + 2‖et‖2] (4)

= J(θtn) + ηt(1− Lηt)‖∇J(θtn)‖2 + ηt〈et,∇J(θtn)〉
− Lη2

t (Lg + C2
gCw)‖θtn − θt0‖2 − Lη2

t ‖et‖2

where (4) follows from Lemma 11. Use Et to denote the expectation with respect to all trajectories
{τ t1, τ t2, ...}, given Nt. Since {τ t1, τ t2, ...} are independent of Nt, Et is equivalently the expectation
with respect to {τ t1, τ t2, ...}. The above inequality gives

Et[J(θtn+1)] ≥ Et[J(θtn)] + ηt(1− Lηt)Et‖∇J(θtn)‖2 + ηtEt〈et,∇J(θtn)〉
− Lη2

t (Lg + C2
gCw)Et‖θtn − θt0‖2 − Lη2

t ‖et‖2

Taking n = Nt and using ENt to denote the expectation w.r.t. Nt, we have from the above

ENtEt[J(θtNt+1)] ≥ ENtEt[J(θtNt)] + ηt(1− Lηt)ENtEt‖∇J(θtNt)‖
2 + ηtENtEt〈et,∇J(θtNt)〉

− Lη2
t (Lg + C2

gCw)ENtEt‖θ
t
Nt − θt0‖2 − Lη2

t ‖et‖2

Rearrange,

ηt(1− Lηt)ENtEt‖∇J(θtNt)‖
2 ≤ ENtEt[J(θtNt+1)] + Lη2

t (Lg + C2
gCw)ENtEt‖θ

t
Nt − θt0‖2

− ηtENtEt〈et,∇J(θtNt)〉+ Lη2
t ‖et‖2 − ENtEt[J(θtNt)]

=
1

Bt
(EtENt [J(θtNt)]− J(θt0))− ηtENtEt〈et,∇J(θtNt)〉

+ Lη2
t (Lg + C2

gCw)ENtEt
∥∥θtNt − θt0

∥∥2
+ Lη2

t ‖et‖
2 (5)

where (5) follows from Lemma 16 with Fubini’s theorem. Note that θ̃t = θtNt and θ̃t−1 = θt0. If we
take expectation over all the randomness and denote it by E, we get

ηt(1− Lηt)E‖∇J(θ̃t)‖2 =
1

Bt
E
[
J(θ̃t)− J(θ̃t−1)

]
− ηtE

〈
et,∇J(θ̃t)

〉
+ Lη2

t (Lg + C2
gCw)E‖θ̃t − θ̃t−1‖2 + Lη2

tE‖et‖2

=
1

Bt
E
[
J(θ̃t)− J(θ̃t−1)

]
− 1

Bt
E
〈
et, θ̃t − θ̃t−1

〉
+ Lη2

t (Lg + C2
gCw)E‖θ̃t − θ̃t−1‖2 + ηt(1 + Lηt)E ‖et‖2 (6)

≤ 1

Bt
E
[
J(θ̃t)− J(θ̃t−1)

]
+

1

2ηtBt
[− 1

Bt
+ η2

t (2Lg + 2C2
gCw)]E‖θ̃t − θ̃t−1‖2

+
1

Bt
E
〈
∇J(θ̃t), θ̃t − θ̃t−1

〉
+
ηt
Bt

E‖∇J(θ̃t)‖2 +
ηt
Bt

E ‖et‖2

+ Lη2
t (Lg + C2

gCw)E‖θ̃t − θ̃t−1‖2 + ηt(1 + Lηt)E ‖et‖2 (7)

where (6) follows from Lemma 12 and (7) follows from Lemma 13. Rearrange,

ηt(1− Lηt −
1

Bt
)E‖∇J(θ̃t)‖2 +

1− 2η2
t (Lg + C2

gCw)Bt − 2Lη3
t (Lg + C2

gCw)B2
t

2ηtB2
t

E‖θ̃t − θ̃t−1‖2

≤ 1

Bt
E
[
J(θ̃t)− J(θ̃t−1)

]
+

1

Bt
E
〈
∇J(θ̃t), θ̃t − θ̃t−1

〉
+ ηt(1 + Lηt +

1

Bt
)E‖et‖2 (8)
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Now we can apply Lemma 17 on E
〈
∇J(θ̃t), θ̃t − θ̃t−1

〉
using a = θ̃t − θ̃t−1, b = ∇J(θ̃t), and

β =
1−2η2t (Lg+C2

gCw)Bt−2Lη3t (Lg+C2
gCw)B2

t

ηtBt
to get

1

Bt
E
〈
∇J(θ̃t), θ̃t − θ̃t−1

〉
≤

1− 2η2
t (Lg + C2

gCw)Bt − 2Lη3
t (Lg + C2

gCw)B2
t

2ηtB2
t

E‖θ̃t − θ̃t−1‖2

+
ηt

2[1− 2η2
t (Lg + C2

gCw)Bt − 2Lη3
t (Lg + C2

gCw)B2
t ]
E‖∇J(θ̃t)‖2

(9)

Combining (8) and (9) and rearrange, we have

ηt(1−Lηt −
1

Bt
− 1

2[1− 2η2
t (Lg + C2

gCw)Bt − 2Lη3
t (Lg + C2

gCw)B2
t ]

)E‖∇J(θ̃t)‖2

≤ 1

Bt
E
[
J(θ̃t)− J(θ̃t−1)

]
+ ηt(1 + Lηt +

1

Bt
)E‖et‖2

≤ 1

Bt
E
[
J(θ̃t)− J(θ̃t−1)

]
+ ηt(1 + Lηt +

1

Bt
)

[
4σ2

(1− α)2KBt
+

48α2σ2V

(1− α)2Bt

]
(10)

where (10) follows from Lemma 15. We want to choose ηt such that 1 − 2η2
t (Lg + C2

gCw)Bt −
2Lη3

t (Lg + C2
gCw)B2

t > 0. Denoting Φ = Lg + C2
gCw, we have

1− 2η2
tΦBt − 2Lη3

tΦB2
t ≥ 0

2η2
tΦBt + 2Lη3

tΦB2
t ≤ 1

We can then choose ηt to have 2η2
tΦBt ≤ 1

2 and 2Lη3
tΦB2

t ≤ 1
2 , which implies:

(i) ηt ≤ 1
(4ΦBt)1/2

(ii) ηt ≤ 1
(4LΦB2

t )1/3

Therefore, we can choose ηt ≤ 1
2(LΦB2

t )1/3
< 1

(4LΦB2
t )1/3

, and set Bt ≥ 4ΦL−2 to ensure both

condition (i) and (ii) are satisfied, together with 1
(4LΦB2

t )1/3
≤ 1

(4ΦBt)1/2
, and Lηt + 1

Bt
≤ 1. Thus,

by choosing ηt ≤ 1

2ΨB
2/3
t

, where Ψ = (LΦ)1/3 = (L(Lg +C2
gCw))1/3, we can obtain the following

from (10):

ηtE‖∇J(θ̃t)‖2 ≤
1

Bt
E
[
J(θ̃t)− J(θ̃t−1)

]
+ 2ηt

[
4σ2

(1− α)2KBt
+

48α2σ2V

(1− α)2Bt

]
Replacing ηt = 1

2ΨB
2/3
t

and rearranging, we have

E‖∇J(θ̃t)‖2 ≤
1

Btηt
E
[
J(θ̃t)− J(θ̃t−1)

]
+ 2

[
4σ2

(1− α)2KBt
+

48α2σ2V

(1− α)2Bt

]

≤
2ΨE

[
J(θ̃t)− J(θ̃t−1)

]
B

1/3
t

+
8σ2

(1− α)2KBt
+

96α2σ2V

(1− α)2Bt

Replacing Bt with constant batch size B and telescoping over t = 1, 2, ..., T , we have for θ̃a from
our algorithm:

E‖∇J(θ̃a)‖2 ≤
2ΨE

[
J(θ̃T )− J(θ̃0)

]
TB1/3

+
8σ2

(1− α)2KB
+

96α2σ2V

(1− α)2B

≤
2Ψ
[
J(θ̃

∗
)− J(θ̃0)

]
TB1/3

+
8σ2

(1− α)2KB
+

96α2σ2V

(1− α)2B

which completes the proof.
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C Proof of Corollary 7

Proof. Recall Ψ = (L(Lg + C2
gCw))1/3. From Theorem 6, we have

E‖∇J(θ̃a)‖2 ≤
2ΨE

[
J(θ̃

∗
)− J(θ̃0)

]
TB1/3︸ ︷︷ ︸

T=O( 1

εB1/3
)

+
8σ2

(1− α)2KB︸ ︷︷ ︸
BK=O( 1

εK )

+
96α2σ2V

(1− α)2B︸ ︷︷ ︸
Bα=O(α

2

ε )

To guarantee that the output of Algorithm 1 is ε-approximate, i.e., E‖∇J(θ̃a)‖2 ≤ ε, we need the
number of rounds T and the batch size B to meet the following:

(i)T = O(
1

εB1/3
), (ii)BK = O(

1

εK
), and (iii)Bα = O(

α2

ε
)

By union bound and using E[Traj(ε)] to denote the total number of trajectories required by each
agent to sample, the above implies that

E[Traj(ε)] ≤ TBK + TBα

≤ O(
1

ε5/3K2/3
+
α4/3

ε5/3
)

in order to obtain an ε-approximate policy, which completes the proof for Corollary 7 (i). Note that
the total number of trajectories generated across the whole FRL system, denoted by E[Trajtotal(ε)]
is thus bounded by:

E[Trajtotal(ε)] ≤ O(
K1/3

ε5/3
+
Kα4/3

ε5/3
)

Now for an ideal system where α = 0:

E[Traj(ε)] ≤ O(
1

ε5/3K2/3
)

E[Trajtotal(ε)] ≤ O(
K1/3

ε5/3
)

which completes the proof for Corollary 7 (ii). Moreover, when K = 1, the number of trajectories
required by the agent using FedPG-BR is

E[Traj(ε)] ≤ O(
1

ε5/3
)

which is Corollary 7 (iii) and is coherent with the recent analysis of SVRPG [19].

D More on the Byzantine Filtering Step

In this section, we continue our discussion on our Byzantine Filtering Step in Section 3.3. We include
the pseudocode for the subroutine FedPG-Aggregate below for ease of reference:

As discussed in Section 3.3, R2 (line 8 in Algorithm 1.1) ensures that Gt always include all good
agents and for any Byzantine agents being included, their impact on the convergence of Algorithm 1
is limited since their maximum distance to ∇J(θt0) is bounded by 3σ. Here we give proofs for the
claims.

Claim D.1. Under Assumption 2 and ∀α < 0.5, the filtering rule R2 in Algorithm 1.1 ensures
that, in any round t, all gradient estimates sent from non-Byzantine agents are included in Gt, i.e.,
|Gt| ≥ (1− α)K.

Proof. First, from Assumption 2:

‖µ(k)
t −∇J(θt0)‖ ≤ σ, ∀k ∈ G
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Algorithm 1.1 FedPG-Aggregate

1: Input: Gradient estimates from K agents in round t: {µ(k)
t }kk=1, Variance Bound σ, filtering

threshold Tµ , 2σ
√

V
Bt

, where V , 2 log(2K
δ ) and δ ∈ (0, 1)

2: S1 , {µ(k)
t } where k ∈ [K] s.t.

∣∣∣{k′ ∈ [K] :
∥∥∥µ(k′)

t − µ(k)
t

∥∥∥ ≤ Tµ

}∣∣∣ > K
2

3: µmom
t ← argmin

µ
(k̃)
t

‖µ(k̃)
t −mean(S1)‖ where k̃ ∈ S1

4: R1: Gt ,
{
k ∈ [K] :

∥∥∥µ(k)
t − µmom

t

∥∥∥ ≤ Tµ

}
5: if |Gt| < (1− α)K then
6: S2 , {µ(k)

t } where k ∈ [K] s.t.
∣∣∣{k′ ∈ [K] :

∥∥∥µ(k′)
t − µ(k)

t

∥∥∥ ≤ 2σ
}∣∣∣ > K

2

7: µmom
t ← argmin

µ
(k̃)
t

‖µ(k̃)
t −mean(S2)‖ where k̃ ∈ S2

8: R2: Gt ,
{
k ∈ [K] :

∥∥∥µ(k)
t − µmom

t

∥∥∥ ≤ 2σ
}

9: Return: µt , 1
|Gt|
∑
k∈Gt µ

(k)
t

it implies that ‖µ(k1)
t − µ(k2)

t ‖ ≤ 2σ, ∀k1, k2 ∈ G. So, for any value of the vector median [46] in S2
= {µ(k)

t } (defined in line 6):

‖µ(k)
t −∇J(θt0)‖ ≤ 3σ, ∀µ(k)

t ∈ S2

An intuitive illustration is provided in Fig. 4. Next, consider the worst case where all values sent by
the K agents are included in S2: for all (1− α)K good agents, they send the same value µ(k)

t , s.t.,
‖∇J(θt0)− µ(k)

t ‖ = σ, ∀k ∈ G; and for all αK Byzantine agents, they send the same value µ(k′)
t s.t.,

‖∇J(θt0)− µ(k′)
t ‖ = 3σ, ∀k′ ∈ S2 \ G. Then the mean of values in S2 satisfies:

‖µmean
t −∇J(θt0)‖ =

(1− α)K · σ + αK · 3σ
K

= (1− α)σ + 3ασ

= σ + 2ασ

< 2σ

where the last inequality holds for α < 0.5 which is our assumption. Then the value µmom
t of

Algorithm 1 will be set to any µ(k)
t from S2, of which is the closet to µmean

t .

The selection of µmom
t implies ‖µmom

t −∇J(θt0)‖ ≤ σ. Therefore, by constructing a region of Gt
that is centred at µmom

t and 2σ in radius (line 8), Gt can cover all estimates from non-Byzantine
agents and hence ensure |Gt| ≥ (1− α)K.

Claim D.2. Under Assumption 2 and α < 0.5, the filtering rule R2 in Algorithm 1.1 ensures that, in
any round t, ‖µ(k)

t −∇J(θt0)‖ ≤ 3σ, ∀k ∈ Gt.

Proof. This lemma is a straightforward result following the proof of Claim D.1.

Remark. Claim D.2 implies that, in any round t, if an estimate sent from Byzantine agent is included
in Gt, then its impact on the convergence of Algorithm 1 is limited since its distance to ∇J(θt0) is
bounded by 3σ. Fig. 4 provides an intuitive illustration for this claim.
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Figure 4: Graphical illustration of the Byzantine filtering strategy where µ(k1)
t , µ

(k2)
t are two good

gradients while the red cross represents one Byzantine gradient which falls within S2. µmom
t will be

chosen at the red diamond.

As discussed above, R2 ensures that all good agents are included in Gt, i.e., a region in which all
good agents are concentrated. R1 (lines 2-4) is designed in a similar way and aims to improve the
practical performance of FedPG-BR by exploiting Lemma 14: all good agents are highly likely to be
concentrated in a much smaller region.

Claim D.3. Define V , 2 log(2K/δ) and δ ∈ (0, 1), the filtering R1 in Algorithm 1 ensure

‖µ(k)
t −∇J(θt0)‖ ≤ σ

√
V

Bt
,∀k ∈ G

with probability of at least 1− δ.

Proof. From Assumption 2, ‖µ(k)
t −∇J(θt0)‖ ≤ σ, ∀k ∈ G. We have

‖µ(k)
t −∇J(θt0)‖ =

∥∥∥∥∥ 1

Bt

Bt∑
i=1

g(τ
(k)
t,i |θ

t
0)−∇J(θt0)

∥∥∥∥∥
=

1

Bt

√√√√∥∥∥∥∥
Bt∑
i=1

g(τ
(k)
t,i |θ

t
0)−∇J(θt0)

∥∥∥∥∥
2

(11)

Consider Xi , g(τ
(k)
t,i )−∇J(θt0) and apply Lemma 14 on (11), we have

Pr

∥∥∥∥∥
Bt∑
i=1

Xi

∥∥∥∥∥
2

≤ 2 log(
2

δ
)σ2Bt

 ≥ 1− δ

Pr

 1

Bt

√√√√∥∥∥∥∥
Bt∑
i=1

Xi

∥∥∥∥∥
2

≤ 1

Bt

√
2 log(

2

δ
)σ2Bt

 ≥ 1− δ

With V , 2 log(2K/δ) and δ ∈ (0, 1), the above inequality yields the Claim.

Therefore, the first filtering R1 (lines 2-4) of FedPG-BR constructs a region of Gt centred at µmom
t

with radius of 2σ
√

V
Bt

, which ensures in any round t that, with probability ≥ 1 − δ, (a) all good
agents are included in Gt, and (b) if gradients from Byzantine agents are included in Gt, their impact is

limited since their maximum distance to ∇J(θt0) is bounded by 3σ
√

V
Bt

(The proof is similar to that
of Claim D.2). Compared to R2, R1 can construct a smaller region that the server believes contains
all good agents. If any Byzantine agent is included, their impact is also smaller, with probability of at
least 1− δ. Therefore, R1 is applied first such that if R1 fails (line 5) which happens with probability
< δ, R2 is then employed as a backup to ensure that Gt always includes all good agents.
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E Useful technical lemmas

Lemma 8 (Unbiaseness of importance sampling).
Eτ∼p(·|θn)[ω(τ |θn,θ0)g(τ |θ0)] = Eτ∼p(·|θ0)[g(τ |θ0)]

= ∇J(θ0)

Proof. Drop t from notation and use τn to denote trajectories sampled from θn at step n. From the
definition of gradient estimation, we have

g(τn|θ0) = Eτ∼p(·|θn)[∇θ0
p(θ0)r(τ)]

=

∫
p(·|θn)∇θ0

p(θ0)r(τ)dτ

=

∫
p(·|θ0)

p(·|θ0)
p(·|θn)∇θ0

p(θ0)r(τ)dτ

=

∫
p(·|θ0)

p(·|θn)

p(·|θ0)
∇θ0

p(θ0)r(τ)dτ

= Eτ∼p(·|θ0)

[
p(·|θn)

p(·|θ0)
∇θ0p(θ0)r(τ)

]
=
p(·|θn)

p(·|θ0)
g(τ0|θ0)

Then,

ω(τ |θn,θ0)g(τn|θ0) =
p(·|θ0)

p(·|θn)
g(τn|θ0)

= g(τ0|θ0)

which gives the lemma.

Lemma 9 (Adapted from [19]). Let ω(τ |θ1,θ2) = p(τ |θ1)/p(τ |θ2), under Assumptions 3 and 5, it
holds that

V ar(ω(τ |θ1,θ2)) ≤ Cw‖θ1 − θ2‖2

where Cw = H(2HG2 +M)(W + 1). Furthermore, we have

Eτtn‖1− ω(τ tn|θ
t
n,θ

t
0)‖2

= V arθtn,θt0(ω(τ tn|θ
t
n,θ

t
0))

≤ Cw‖θtn − θt0‖2

Proof. The proof can be found in Xu et al. [19].

Lemma 10. For X1, X2 ∈ Rd, we have

‖X1 +X2‖2 ≤ 2‖X1‖2 + 2‖X2‖2

Lemma 11.
Eτtn [‖vtn‖2] ≤ (2Lg + 2C2

gCw)
∥∥θtn − θt0

∥∥2
+ 2

∥∥∇J(θtn)
∥∥2

+ 2 ‖et‖2

Proof. We follow the suggestion of Lei et al. [35] to set bt = 1 to deliver better theoretical results.
However in our experiments, we do allow bt to be sampled from different values. With bt = 1 and
µt = 1

|Gt|
∑
k∈Gt µ

(k)
t , we have the flowing definition according to Algorithm 1:

vtn , g(τ tn | θ
t
n)− ω(τ tn | θ

t
n,θ

t
0)g(τ tn | θ

t
0) + ut (11-12)

which is the SCSG update step. Define et , ut −∇J
(
θt0
)
, we then have

Eτtn [vtn] = ∇J(θtn)−∇J(θt0) + et +∇J(θt0)

= ∇J(θtn) + et (11-13)
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Note that ∇J(θtn) − ∇J(θt0) = Eτtn [g(τ tn | θ
t
n) − ω(τ tn | θ

t
n,θ

t
0)g(τ tn | θ

t
0)] as we have showed

that the importance weighting term results in unbiased estimation of the true gradient in Lemma 8.
Then from E‖X‖2 = E‖X − EX‖2 + ‖EX‖2,

Eτtn [‖vtn‖2] = Eτtn
∥∥vtn − Eτtn [vtn]

∥∥2
+
∥∥Eτtn [vtn]

∥∥2

= Eτtn
∥∥g(τ tn | θ

t
n)− ω(τ tn | θ

t
n,θ

t
0)g(τ tn | θ

t
0) + ut − (∇J(θtn) + et)

∥∥2
+
∥∥Eτtn [vtn

]
‖2

= Eτtn
∥∥g(τ tn | θ

t
n)− ω(τ tn | θ

t
n,θ

t
0)g(τ tn | θ

t
0)− (∇J(θtn)−∇J(θt0))

∥∥2
+
∥∥∇J(θtn) + et

∥∥2

≤ Eτtn
∥∥g(τ tn | θ

t
n)− ω(τ tn | θ

t
n,θ

t
0)g(τ tn | θ

t
0)
∥∥2

+ 2
∥∥∇J(θtn)

∥∥2
+ 2 ‖et‖2 (11-14)

where (11-14) follows from E‖X − EX‖2 ≤ E‖X‖2 and Lemma 10. Note that

Eτtn
∥∥g(τ tn | θ

t
n)− ω(τ tn | θ

t
n,θ

t
0)g(τ tn | θ

t
0)
∥∥2

= Eτtn‖g(τ tn | θ
t
n) + g(τ tn | θ

t
0)− g(τ tn | θ

t
0)− ω(τ tn | θ

t
n,θ

t
0)g(τ tn | θ

t
0)‖2

= Eτtn‖g(τ tn | θ
t
n)− g(τ tn | θ

t
0) + (1− ω(τ tn | θ

t
n,θ

t
0))g(τ tn | θ

t
0)‖2

≤ 2Eτtn
∥∥g(τ tn | θ

t
n)− g(τ tn | θ

t
0)
∥∥2

+ 2Eτtn
∥∥(1− ω(τ tn | θ

t
n,θ

t
0))g(τ tn | θ

t
0)
∥∥2

(11-15)
where (11-15) follows from Lemma 10. Combining (11-14) and (11-15), we have

Eτtn [‖vtn‖2] ≤ 2Eτtn
∥∥g(τ tn | θ

t
n)− g(τ tn | θ

t
0)
∥∥2

+ 2Eτtn
∥∥(1− ω(τ tn|θ

t
n,θ

t
0))g(τ tn | θ

t
0)
∥∥2

+ 2
∥∥∇J(θtn)

∥∥2
+ 2 ‖et‖2

≤ 2Lg
∥∥θtn − θt0

∥∥2
+ 2C2

gEτtn‖(1− ω(τ tn|θ
t
n,θ

t
0))‖2 + 2

∥∥∇J(θtn)
∥∥2

+ 2 ‖et‖2 (11-16)

≤ 2Lg
∥∥θtn − θt0

∥∥2
+ 2C2

gCw
∥∥θtn − θt0

∥∥2
+ 2

∥∥∇J(θtn)
∥∥2

+ 2‖et‖2 (11-17)

= (2Lg + 2C2
gCw)

∥∥θtn − θt0
∥∥2

+ 2
∥∥∇J(θtn)

∥∥2
+ 2 ‖et‖2 (11-18)

where (11-16) is from Lemma 4 and (11-17) follows from Lemma 9

Lemma 12.

ηtE
〈
et,E∇J(θ̃t)

〉
=

1

Bt
E
〈
et, θ̃t − θ̃t−1

〉
− ηtE ‖et‖2

Proof. Consider M t
n = 〈et,θtn − θt0〉. We have

M t
n+1 −M t

n = 〈et,θtn+1 − θtn〉 = ηt〈et, vtn〉

Taking expectation with respect to τ tn, we have
Eτtn

[
M t
n+1 −M t

n

]
= ηt

〈
et,Eτtn [vtn]

〉
= ηt

〈
et,∇J(θtn)

〉
+ ηt ‖et‖2

following from (11-13). Use Et to denote the expectation with respect to all trajectories {τ t1, τ t2, ...},
given Nt. Since {τ t1, τ t2, ...} are independent of Nt, Et is equivalently the expectation with respect to
{τ t1, τ t2, ...}. We have

Et[M t
n+1 −M t

n] = ηt
〈
et,Et∇J(θtn)

〉
+ ηt ‖et‖2

Taking n = Nt and denoting ENt the expectation w.r.t. Nt, we have

ENtEt(M t
Nt+1 −M t

Nt) = ηt〈et,ENtEt∇J(θtNt)〉+ ηt ‖et‖2 .

Using Fubini’s theorem, Lemma 16 and using the fact θtNt = θ̃t and θt0 = θ̃t−1,

ENtEt(M t
Nt+1 −M t

Nt) = −EtENt(M t
Nt −M

t
Nt+1)

= −(
1

Bt/(Bt + 1)
− 1)(M t

0 − ENtEtM t
Nt)

=
1

Bt
ENtEt

〈
et, θ̃t − θ̃t−1

〉
= ηt

〈
et,ENtEt∇J(θtNt)

〉
+ ηt ‖et‖2

Taking expectation with respect to the whole past yields the lemma.
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Lemma 13.

−2ηtE〈et, θ̃t − θ̃t−1〉 ≤
[
− 1

Bt
+ η2

t (2Lg + 2C2
gCw)

]
E‖θ̃t − θ̃t−1‖2 + 2η2

tE‖et‖2

+2ηtE〈∇J(θ̃t, θ̃t − θ̃t−1〉+ 2η2
tE‖∇J(θ̃t)‖2

Proof. We have from the update equation θtn+1 = θtn + ηtv
t
n, then,

Eτtn‖θ
t
n+1 − θt0‖2 = Eτtn‖θ

t
n + ηtv

t
n − θt0‖2

= ‖θtn − θt0‖2 + η2
tEτtn‖v

t
n‖2 + 2ηt〈Eτtn [vtn],θtn − θt0〉

≤ ‖θtn − θt0‖2 + η2
t [(2Lg + 2C2

gCw)‖θtn − θt0‖2 + 2‖∇J(θtn)‖2 + 2‖et‖2]

+ 2ηt〈et,θtn − θt0〉+ 2ηt〈∇J(θtn),θtn − θt0〉 (13-19)

= [1 + η2
t (2Lg + 2C2

gCw)]‖θtn − θt0‖2 + 2ηt〈∇J(θtn),θtn − θt0〉
+ 2ηt〈et,θtn − θt0〉+ 2η2

t ‖∇J(θtn)‖2 + 2η2
t ‖et‖2

where (13-19) follows the result of (11-18). Use Et to denote the expectation with respect to all
trajectories {τ t1, τ t2, ...}, given Nt. Since {τ t1, τ t2, ...} are independent of Nt, Et is equivalently the
expectation with respect to {τ t1, τ t2, ...}. We have

Et‖θtn+1 − θt0‖2 ≤ [1 + η2
t (2Lg + 2C2

gCw)]Et‖θtn − θt0‖2 + 2ηtEt〈∇J(θtn),θtn − θt0〉
+2ηtEt〈et,θtn − θt0〉+ 2η2

tEt‖∇J(θtn)‖2 + 2η2
t ‖et‖2

Now taking n = Nt and denoting ENt the expectation w.r.t. Nt we have

− 2ηtENtEt
〈
et,θ

t
Nt − θt0

〉
≤ [1 + η2

t (2Lg + 2C2
gCw)]ENtEt

∥∥θtNt − θt0
∥∥2 − ENtEt

∥∥θtNt+1 − θt0
∥∥2

+ 2ηtENtEt
〈
∇J(θtNt),θ

t
Nt − θt0

〉
+ 2η2

tENtEt
∥∥∇J(θtNt)

∥∥2
+ 2η2

t ‖et‖
2

=

[
− 1

Bt
+ η2

t (2Lg + 2C2
gCw)

]
ENtEt

∥∥θtNt − θt0
∥∥2

+ 2ηtENtEt
〈
∇J(θtNt),θ

t
Nt − θt0

〉
+ 2η2

tENtEt
∥∥∇J(θtNt)

∥∥2
+ 2η2

t ‖et‖
2 (13-20)

where (13-20) follows Lemma 16 using Fubini’s theorem. Rearranging, replacing θtNt = θ̃t and
θt0 = θ̃t−1 and taking expectation w.r.t the whole past yields the lemma.

Lemma 14 (Pinelis’ inequality [76]; Lemma 2.4 [46]). Let the sequence of random variables
X1, X2, ..., XN ∈ Rd represent a random process such that we have E[Xn|X1, ..., Xn−1] and
‖Xn‖ ≤M . Then,

P
[
‖X1 + . . .+XN‖2 ≤ 2 log(2/δ)M2N

]
≥ 1− δ

Lemma 15 (Adapted from [48]). If we choose δ and Bt in Algorithm 1 such that:

(i) e
δBt

2(1−2δ) ≤ 2K
δ ≤ e

Bt
2

(ii) δ ≤ 1
5KBt

then we have the following bound for E‖et‖2:

E ‖et‖2 ≤
4σ2

(1− α)2KBt
+

48α2σ2V

(1− α)2Bt

Proof. The proof of this lemma is similar to that of Lemma 7 of Khanduri et al. [48]. The key
difference lays on the base conditions used to define the probabilistic events.

In FedPG-BR, the following refined conditions (results of Claims D.1 and D.2) are used,

‖µmom
t −∇J(θ)‖ ≤ σ, ‖µ(k)

t − µmom
t ‖ ≤ 2σ, ‖µ(k)

t −∇J(θ)‖ ≤ 3σ, ∀k ∈ Gt
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whereas Khanduri et al. [48] needs the following:

‖µmed
t −∇J(θ)‖ ≤ 3σ, ‖µ(k)

t − µmed
t ‖ ≤ 4σ, ‖µ(k)

t −∇J(θ)‖ ≤ 7σ, ∀k ∈ Gt

The detailed proof of Lemma 15 can be obtained following the derivation of Lemma 7 of Khanduri
et al. [48] by modifying the base conditions.

Lemma 16. If N ∼ Geom(Γ) for Γ > 0. Then for any sequence D0, D1, ... with E‖DN‖ ≤ ∞,
we have

E [DN −DN+1] = (
1

Γ
− 1)(D0 − EDN )

Proof. The proof can be found in Lei et al. [35].

Lemma 17 (Young’s inequality (Peter-Paul inequality)). For all real numbers a and b and all β > 0,
we have

ab ≤ a2

2β
+
βb2

2

F Experimental details

F.1 Hyperparameters

We follow the setups of SVRPG [18] to parameterize the policies using neural networks. For all
the algorithms under comparison in the experiments (Section 5), Adam[77] is used as the gradient
optimizer. The 10 random seeds are [0−9]. All other hyperparameters used in all the experiments are
reported in Table 2.

Table 2: Hyperparameters used in the experiments.

Hyperparameters Algorithms CartPole-v1 LunarLander-v2 HalfCheetach-v2
NN policy - Categorical MLP Categorical MLP Gaussian MLP

NN hidden weights - 16,16 64,64 64,64
NN activation - ReLU Tanh Tanh

NN output activation - Tanh Tanh Tanh
Step size (Adam) η - 1e-3 1e-3 8e-5
Discount factor γ - 0.999 0.990 0.995

Maximum trajectories - 5000 10000 10000
Task horizon H (for training) - 500 1000 500

Task horizon H (for test) - 500 1000 1000
α (for practical setup) - 0.3 0.3 0.3

Number of runs - 10 10 10

Batch size Bt

GPOMDP 16 32 48
SVRPG 16 32 48

FedPG-BR sampled from [12, 20] sampled from [26, 38] sampled from [46, 50]

Mini-Batch size bt
GPOMDP - - -
SVRPG 4 8 16

FedPG-BR 4 8 16

Number of steps Nt

GPOMDP 1 1 1
SVRPG 3 3 3

FedPG-BR Nt ∼ Geom( Bt
Bt+bt

) Nt ∼ Geom( Bt
Bt+bt

) Nt ∼ Geom( Bt
Bt+bt

)

Variance bound σ
(Estimated by server)

GPOMDP - - -
SVRPG - - -

FedPG-BR 0.06 0.07 0.9

Confidence parameter δ
GPOMDP - - -
SVRPG - - -

FedPG-BR 0.6 0.6 0.6
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Figure 5: Performance of FedPG-BR in practical systems with α > 0 for CartPole. Each subplot
corresponds to a different type of Byzantine failure exercised by the 3 Byzantine agents.
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Figure 6: Performance of FedPG-BR in practical systems with α > 0 for LunarLander. Each subplot
corresponds to a different type of Byzantine failure exercised by the 3 Byzantine agents.

F.2 Computing Infrastructure

All experiments are conducted on a computing server without GPUs. The server is equipped with 14
cores (28 threads) Intel(R) Core(TM) i9-10940X CPU @ 3.30GHz and 64G memory. The average
runtime for each run of FedPG-BR (K=10 B=3) is 2.5 hours for the CartPole task, 4 hours for the
HalfCheetah task, and 12 hours for the LunarLander task.

G Additional experiments

G.1 Performance of FedPG-BR in practical systems with α > 0 for the CartPole and the
LunarLander tasks

The results for the CartPole and the LunarLander tasks which yield the same insights as discussed in
experiments (Section 5) are plotted in Figure 5 and Figure 6. As discussed earlier, for both GPOMDP
and SVRPG, the federation of more agents in practical systems which are subject to the presence
of Byzantine agents, i.e., random failures or adversarial attacks, causes the performance of their
federation to be worse than that in the single-agent setting. In particular, RA agents (middle figure)
and SF agents (right figure) render GPOMDP and SVRPG unlearnable, i.e., unable to converge at
all. This is in contrast to the performance of FedPG-BR. That is, FedPG-BR (K = 10B = 3) is
able to deliver superior performances even in the presence of Byzantine agents for all three tasks:
CartPole (Figure 5), LunarLander (Figure 6), and HalfCheetah (Figure 2 in Section 5). This provides
an assurance on the reliability of our FedPG-BR algorithm to promote its practical deployment, and
significantly improves the practicality of FRL.

G.2 Performance of FedPG-BR against the Variance Attack

We have discussed in Section 3.2 where the high variance in PG estimation renders the FRL system
vunlnerable to variance-based attacks such as the Variance Attack (VA) proposed by Baruch et al.
[47]. The VA attackers collude together to estimate the population mean and the standard-deviation
of gradients at each round, and move the mean by the largest value such that their values are still
within the population variance. Intuitively, this non-omniscient attack works by exploiting the high
variance in gradient estimation of the population and crafting values that contribute most to the
population variance, hence gradually shifting the population mean. According to Cao et al. [20],
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Figure 7: Performance of FedPG-BR in practical systems with α > 0 for CartPole. Among the
K = 10 participating agents, 3 Byzantine agents are colluding together to launch the VA attack.

existing defenses will fail to remove those non-omniscient attackers and the convergence will be
significantly worsened if the population variance is large enough.

We are thus motivated to look for solutions that theoretically reduce the variance in policy gradient
estimation. Inspired by the variance-reduced policy gradient works [e.g., 18, 19], we adapt the SCSG
optimization [35] to our federated policy gradient framework for a refined control over the estimation
variance. Through our adaptation, we are able to control the variance by the semi-stochastic gradient
(line 11 in Algorithm 1), hence resulting in the fault-tolerant FRL system that can defend the VA
attackers. Each plot in Figure 7 shows the experiment for each of the three tasks correspondingly,
where 3 Byzantine agents are implemented as the VA attackers [20] (zmax is 0.18 in our setup). We
again include the corresponding single-agent performance (K = 1) and the federation of 10 good
agents (K = 10) in the plots for reference. The results show that in all three tasks, FedPG-BR
(K = 10B = 3) still manages to significantly outperform FedPG-BR (K = 1) in the single-agent
setting. Furthermore, the performance of FedPG-BR (K = 10B = 3) is barely worsened compared
with FedPG-BR (K = 10) with 10 good agents. This shows that, with the adaptation of SCSG,
our fault-tolerant FRL system can perfectly defend the VA attack from the literature, which further
corroborates our analysis on our Byzantine filtering step (Section 3.3) showing that if gradients from
Byzantine agents are not filtered out, their impact is limited since their maximum distance to∇J(θt0)
is bounded by 3σ (Claim D.2).

G.3 Environment Setup

On a Linux system, navigate into the root directory of this project and execute the following
commands:

$ conda create -n FT -FRL pytorch =1.5.0
$ conda activate FT -FRL
$ pip install -r requirements.txt
$ cd codes

To run experiments in HalfCheetah, a mujoco license4 is required. After obtaining the license, install
the mujoco-py library by following the instructions from OpenAI.5

G.4 Examples

To reproduce the results of FedPG-BR (K = 10) in Figure 1 for the HalfCheetah task, run the
following command:

$ python run.py --env_name HalfCheetah -v2 --FT_FedPG
--num_worker 10 --num_Byzantine 0
--log_dir ./ logs_HalfCheetah --multiple_run 10
--run_name HalfCheetah_FT -FRL_W10B0

To reproduce the results of FedPG-BR (K = 10 B = 3) in Figure 2 where 3 Byzantine agents are
Random Noise in the HalfCheetah task environment, run the following command:

4http://www.mujoco.org
5https://github.com/openai/mujoco-py
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$ python run.py --env_name CartPole -v1 --FT_FedPG
--num_worker 10 --num_Byzantine 3
--attack_type random -noise
--log_dir ./ logs_Cartpole --multiple_run 10
--run_name Cartpole_FT -FRL_W10B3

Replace ‘--FT_FedPG’ with ‘--SVRPG’ for the results of SVRPG in the same experiment. All
results including all statistics will be logged into the directory indicated by ‘--log_dir‘, which can
be visualized in tensorboard.

To visualize the behavior of the learnt policy, run the experiment in evaluation mode with rendering
option on. For example:

$ python run.py --env_name CartPole -v1 --FT_FedPG
--eval_only --render
--load_path PATH_TO_THE_SAVED_POLICY_MODEL
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