
Unifying and Boosting Gradient-Based Training-Free
Neural Architecture Search

Yao Shu†, Zhongxiang Dai†, Zhaoxuan Wu§, Bryan Kian Hsiang Low†

Dept. of Computer Science, National University of Singapore, Republic of Singapore†

Institute of Data Science, National University of Singapore, Republic of Singapore§

Integrative Sciences and Engineering Programme, NUSGS, Republic of Singapore§

{shuyao,daizhongxiang,lowkh}@comp.nus.edu.sg†

wu.zhaoxuan@u.nus.edu§

Abstract

Neural architecture search (NAS) has gained immense popularity owing to its
ability to automate neural architecture design. A number of training-free metrics
are recently proposed to realize NAS without training, hence making NAS more
scalable. Despite their competitive empirical performances, a unified theoretical
understanding of these training-free metrics is lacking. As a consequence, (a) the
relationships among these metrics are unclear, (b) there is no theoretical interpreta-
tion for their empirical performances, and (c) there may exist untapped potential
in existing training-free NAS, which probably can be unveiled through a unified
theoretical understanding. To this end, this paper presents a unified theoretical anal-
ysis of gradient-based training-free NAS, which allows us to (a) theoretically study
their relationships, (b) theoretically guarantee their generalization performances,
and (c) exploit our unified theoretical understanding to develop a novel framework
named hybrid NAS (HNAS) which consistently boosts training-free NAS in a prin-
cipled way. Remarkably, HNAS can enjoy the advantages of both training-free
(i.e., the superior search efficiency) and training-based (i.e., the remarkable search
effectiveness) NAS, which we have demonstrated through extensive experiments.

1 Introduction

Recent years have witnessed a surging interest in applying deep neural networks (DNNs) in real-world
applications, e.g., machine translation [1], object detection [2], among others. To achieve compelling
performances in these applications, many domain-specific neural architectures have been handcrafted
by human experts with considerable efforts. However, these efforts have gradually become unaf-
fordable due to the growing demand for customizing neural architectures for different tasks. To this
end, neural architecture search (NAS) [3] has been proposed to design neural architectures auto-
matically. While many training-based NAS algorithms [4, 5] have achieved state-of-the-art (SOTA)
performances in various tasks, their search costs usually are unaffordable in resource-constrained
scenarios mainly due to their requirement for training DNNs during search. As a result, a number
of training-free metrics have been developed to realize training-free NAS [6, 7]. Surprisingly, these
training-free NAS algorithms are able to achieve competitive empirical performances even compared
with other training-based NAS algorithms while incurring significantly reduced search costs. More-
over, the architectures selected by these training-free NAS algorithms have been empirically found to
transfer well to different tasks [7, 8].

Despite the impressive empirical performances of the NAS algorithms using training-free metrics, a
unified theoretical analysis of these training-free metrics is still lacking in the literature, leading to a
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few significant implications. Firstly, the theoretical relationships of these training-free metrics are
unclear, making it challenging to explain why they usually lead to comparable empirical results [9].
Secondly, there is no theoretical guarantee for the empirically observed compelling performances of
the architectures selected by NAS algorithms using these training-free metrics. As a consequence,
the reason why NAS using these training-free metrics works well is still not well understood, and
hence there lacks theoretical assurances for NAS practitioners when deploying these algorithms. To
the best of our knowledge, the theoretical aspect of NAS with training-free metrics has only been
preliminarily studied by Shu et al. [8]. However, their analyses are only based on the training rather
than generalization performances of different architectures and are restricted to a single training-free
metric. Thirdly, there may exist untapped potential in existing training-free NAS algorithms, which
probably can be unveiled through a unified theoretical understanding of their training-free metrics.

To this end, we perform a unified theoretical analysis of gradient-based training-free NAS to resolve
all the three problems discussed above in this paper. Firstly, we theoretically prove the connections
among different gradient-based training-free metrics in Sec. 4.1. Secondly, based on these provable
connections, we derive a unified generalization bound for DNNs with these metrics and then use it to
provide principled interpretations for the compelling empirical performances of existing training-free
NAS algorithms (Secs. 4.2 and 4.3). Moreover, we demonstrate that our theoretical interpretation for
training-free NAS algorithms, surprisingly, displays the same preference of architecture topology (i.e.,
wide or deep) as training-based NAS algorithms under certain conditions (Sec. 4.4), which helps to
justify the practicality of our theoretical interpretations. Thirdly, by exploiting our unified theoretical
analysis, we develop a novel NAS framework named hybrid NAS (HNAS) to consistently boost
existing training-free NAS algorithms (Sec. 5) in a principled way. Remarkably, through a theory-
inspired combination with Bayesian optimization (BO), our HNAS framework enjoys the advantages
of both training-based (i.e., remarkable search effectiveness) and training-free (i.e., superior search
efficiency) NAS simultaneously, making it more advanced than existing training-free and training-
based NAS algorithms. Lastly, we use extensive experiments to verify the insights derived from our
unified theoretical analysis, as well as the search effectiveness and efficiency of our non-trivial HNAS
framework (Sec. 6).

2 Related Works

Recently, a number of training-free metrics have been proposed to estimate the generalization perfor-
mances of neural architectures, allowing the model training in NAS to be completely avoided. For
instance, Mellor et al. [6] have developed a heuristic metric using the correlation of activations in
an initialized DNN. Meanwhile, Abdelfattah et al. [9] have empirically revealed a large correlation
between training-free metrics that were formerly applied in network pruning, e.g., SNIP [10] and
GraSP [11], and the generalization performances of candidate architectures in the search space. These
results hence indicate the feasibility of using training-free metrics to estimate the performances of
candidate architectures in NAS. Chen et al. [7] have proposed a heuristic metric to trade off the
trainability and expressibility of neural architectures in order to find well-performing architectures
in various NAS benchmarks. Xu et al. [12] have applied the mean of the Gram matrix of gradients
to quickly estimate the performances of architectures. More recently, Shu et al. [8] have employed
the theory of Neural Tangent Kernel (NTK) [13] to formally derive a performance estimator using
the trace norm of the NTK matrix with initialized model parameters, which, surprisingly, is shown
to be data- and label-agnostic. Though these existing works have demonstrated the feasibility of
training-free NAS through their compelling empirical results, the reason as to why training-free NAS
performs well in practice and the answer to the question of how training-free NAS can be further
boosted remain mysteries in the literature. This paper aims to provide theoretically grounded answers
to these two questions through a unified analysis of existing gradient-based training-free metrics.

3 Notations and Backgrounds

3.1 Neural Tangent Kernel

To simplify the analysis in this paper, we consider a L-layer DNN with identical widths n1 = · · · =
nL−1 = n and scalar output (i.e., nL = 1) based on the formulation of DNNs in [13]. Let f(x,θ)
be the output of a DNN with input x ∈ Rn0 and parameters θ ∈ Rd that are initialized using the
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standard normal distribution, the NTK matrix Θ ∈ Rm×m over a dataset of size m is defined as

Θ(x,x′;θ) = ∇θf(x,θ)
⊤∇θf(x

′,θ) . (1)

Jacot et al. [13] have shown that this NTK matrix Θ will finally converge to a deterministic form Θ∞
in the infinitely wide DNN model. Meanwhile, Arora et al. [14], Allen-Zhu et al. [15] have further
proven that a similar result, i.e., Θ ≈ Θ∞, can also be achieved in over-parameterized DNNs of finite
width. Besides, Arora et al. [14], Lee et al. [16] have revealed that the training dynamics of DNNs
can be well-characterized using this NTK matrix at initialization (i.e., Θ0 based on the initialized
model parameters θ0) under certain conditions. More recently, Yang and Littwin [17] have further
demonstrated that these conclusions about NTK matrix shall also hold for DNNs with any reasonable
architecture, even including recurrent neural networks (RNNs) and graph neural networks (GNNs).
Therefore, the conclusions drawn based on the formulation above in this paper are expected to be
applicable to the NAS search spaces with complex architectures, which we will validate empirically.

3.2 Gradient-Based Training-Free Metrics for NAS

In this paper, we mainly focus on the study of those gradient-based training-free metrics, i.e., the
training-free metrics that are derived from the gradients of initialized model parameters, which we
introduce below. Previous works have empirically shown that better model performances are usually
associated with larger values of these training-free metrics in practice [9].

Gradient norm of initialized model parameters. While Abdelfattah et al. [9] were the first to
employ the gradient norm of initialized model parameters to estimate the generalization performance
of candidate architectures, the same form has also been derived by Shu et al. [8] to approximate their
training-free metric efficiently. Following the notations in Sec. 3.1, let ℓ(·, ·) be the loss function, we
define the gradient norm over dataset S = {(xi, yi)}mi=1 as

MGrad ≜

∥∥∥∥∥ 1

m

m∑
i=1

∇θℓ(f(xi,θ0), yi)

∥∥∥∥∥
2

. (2)

SNIP and GraSP. SNIP [10] and GraSP [11] were originally proposed for training-free network
pruning, and Abdelfattah et al. [9] have applied them in training-free NAS to estimate the perfor-
mances of candidate architectures without model training. Following the notations in Sec. 3.1, let
Hi ∈ Rd×d denote the hessian matrix induced by input xi, the metrics of SNIP and GraSP on dataset
S = {(xi, yi)}mi=1 can be defined as

MSNIP ≜

∣∣∣∣∣ 1m
m∑
i

θ⊤
0 ∇θℓ(f(xi,θ0), yi)

∣∣∣∣∣ , MGraSP ≜

∣∣∣∣∣ 1m
m∑
i

θ⊤
0 (Hi∇θℓ(f(xi,θ0), yi))

∣∣∣∣∣ . (3)

Of note, we use the scaled (i.e, by 1/m) absolute value of the original GraSP metric in [11] throughout
this paper to match the mathematical form of other training-free metrics.

Trace norm of NTK matrix at initialization. Recently, Shu et al. [8] have reformulated NAS into
a constrained optimization problem to maximize the trace norm of the NTK matrix at initialization.
In addition, Shu et al. [8] have empirically shown that this trace norm is highly correlated with the
generalization performance of candidate architectures under their derived constraint. Let Θ0 be
the NTK matrix based on initialized model parameters θ0 of a DNN, then without considering the
constraint in [8], we frame this training-free metric on dataset S = {(xi, yi)}mi=1 as

MTrace ≜
√

∥Θ0∥tr/m . (4)

4 Theoretical Analyses of Training-Free NAS

4.1 Connections among Training-Free Metrics

Notably, though the gradient-based training-free metrics introduced in Sec. 3.2 seem to have distinct
mathematical forms, most of them will actually achieve similar empirical performances in practice [9].
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More interestingly, these metrics in fact share the similarity of using the gradients of initialized model
parameters in their calculations. Based on these facts, we propose the following hypothesis to explain
the similar performances achieved by different training-free metrics in Sec. 3.2: The training-free
metrics in Sec. 3.2 may be theoretically connected and hence could provide similar characterization
for the generalization performances of neural architectures. We validate this hypothesis affirmatively
and use the following theorem to establish the theoretical connections among these metrics.

Theorem 1. Let the loss function ℓ(·, ·) in gradient-based training-free metrics be β-Lipschitz con-
tinuous and γ-Lipschitz smooth in the first argument. There exist the constant C1, C2, C3 > 0 such
that the following holds with a high probability,

MGrad ≤ C1MTrace, MSNIP ≤ C2MTrace, MGraSP ≤ C3MTrace .

The proof of Theorem 1 are given in Appendix A.1. Notably, our Theorem 1 implies that with a high
probability, architectures of larger MGrad, MSNIP or MGrad will also achieve a larger MTrace given
the inequalities above. That is, the value of MGrad, MSNIP and MGrad for different architectures in
the NAS search space should be highly correlated with the value of MTrace. As a consequence, these
training-free metrics should be able to provide similar estimation of the generalization performances
of architectures (validated in Sec. 6.2) and hence similar performances can be achieved when using
these metrics (validated in Sec. 6.4). Overall, the training-free NAS metrics from Sec. 3.2 can all be
theoretically connected with MTrace despite their distinct mathematical forms. Note that though our
Theorem 1 is only able to establish the theoretical connections between MTrace and other training-free
metrics, our empirical results in Appendix C.1 further reveal that any two training-free metrics from
Sec. 3.2 will also be highly correlated. Interestingly, these results also serve as principled justifications
for the similar performances achieved by these training-free metrics in [9].

4.2 A Generalization Bound Induced by Training-free Metrics

Let dataset S={(xi, yi)}mi=1 be randomly sampled from a data distribution D, we denote LS(·) as the
training error on S and LD(·) as the corresponding generalization error on D. Intuitively, a smaller
generalization error indicates a better generalization performance. Thanks to the common theoretical
underpinnings of gradient-based training-free metrics formalized by Theorem 1, we can perform a
unified generalization analysis for DNNs in terms of these metrics by making use of the NTK theory
[13]. Define ℓ(f, y) ≜ (f−y)2/2 and η0 ≜ min{2n−1(λmin(Θ∞)+λmax(Θ∞))−1,mλ−1

max(Θ0)}
with λmin(·), λmax(·) being the minimum and maximum eigenvalue of a matrix respectively, we
derive the following theorem:

Theorem 2. Assume ∥xi∥2 ≤ 1 and f(xi,θ0), λmin(Θ0), yi ∈ [0, 1] for any (xi, yi) ∈ S. There
exists a constant N ∈ N such that for any n > N , when applying gradient descent with learning rate
η < η0, the generalization error of ft at time t > 0 can be bounded as below with a high probability,

LD(ft) ≤ LS(ft) +O(κ/M) .

Here, M can be any metric in Sec. 3.2 and κ ≜ λmax(Θ0)/λmin(Θ0) is the condition number of Θ0.

Its proof is in Appendix A.2 and the second term O(κ/M) in Theorem 2 represents the generalization
gap of DNN models. Notably, our Theorem 2 provides an explicit theoretical connection between the
gradient-based training-free metrics from Sec. 3.2 and the generalization gap of DNNs, which later
serves as the foundation to theoretically interpret the compelling performances achieved by existing
training-free NAS algorithms (Sec. 4.3). Compared to the traditional Rademacher complexity [18],
these training-free metrics provide alternative methods to measure the complexity of DNNs when
estimating the generalization gap of DNNs.

4.3 Concrete Generalization Guarantees for Training-Free NAS

Since the LS(·) in our Theorem 2 may also depend on the training-free metric M, it also needs to
be taken into account when analyzing the generalization performance (or the generalization error
LD(·)) for training-free NAS methods. To this end, in this section, we derive concrete generalization
guarantees for NAS methods using training-free metrics by considering two different scenarios (i.e.,
the realizable and non-realizable scenarios) for the training error term LS(·) in Theorem 2, which
finally give rise to principled interpretations for different training-free NAS methods [7–9].
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The realizable scenario. Similar to [18], we assume that a zero training error (i.e., LS(ft) → 0
when t is sufficiently large) can be achieved in the realizable scenario. By further assuming that the
condition number κ in Theorem 2 is bounded by κ0 for all candidate architectures in the search space,
we can then derive the following generalization guarantee (Corollary 1) for the realizable scenario.
Corollary 1. Under the conditions in Theorem 2, for ft at convergence (i.e., t → ∞) in the realizable
scenario and for any training-free metric M from Sec. 3.2, the following holds with a high probability,

LD(ft) ≤ O(1/M) .

Corollary 1 is obtained by introducing LS(ft) = 0 and κ ≤ κ0 into Theorem 2. Importantly, Corol-
lary 1 suggests that in the realizable scenario, the generalization error of DNNs is negatively correlated
with the metrics from Sec. 3.2. That is, an architecture with a larger value of training-free metric
M generally achieves an improved generalization performance. This implies that in order to select
well-performing architectures, we can simply maximize M to find A∗ = argmaxA M(A) where A
denotes any architecture in the search space. Interestingly, this formulation aligns with the training-
free NAS method from [9], which has made use of the metrics MGrad,MSNIP and MGraSP to achieve
good empirical performances. Therefore, our Corollary 1 provides a valid generalization guarantee
and also a principled justification for the method from [9].

The non-realizable scenario. In practice, different candidate architectures in a NAS search space
typically have diverse non-zero training errors [8] and κ [7]. Therefore, the assumptions of the zero
training error and the bounded κ in the realizable scenario above may be impractical. In light of this,
we drop these two assumptions and derive the following generalization guarantee (Corollary 2) for
the non-realizable scenario, which, interestingly, facilitates theoretically grounded interpretations for
the training-free NAS methods from [8, 7].
Corollary 2. Under the conditions in Theorem 2, for any ft at time t > 0 and any training-free
metric M from Sec. 3.2 in the non-realizable scenario, there exists a constant C > 0 such that with a
high probability,

LD(ft) ≤
1

2

(
m− ηM2/C

)2t
+O(κ/M) .

Its proof is given in Appendix A.3. Notably, our Corollary 2 suggests that when M ∈ [0,
√
mC/η],

an architecture with a larger value of the metric M will lead to a better generalization performance
because such a model has both a faster convergence (i.e., the first term decreases faster w.r.t time t)
and a smaller generalization gap (i.e., the second term is smaller). Interestingly, Shu et al. [8] have
leveraged this insight to introduce the training-free metric of MTrace with a constraint, which has
achieved a higher correlation with the generalization performance of architectures than the metrics
from [9]. This therefore implies that our Corollary 2 followed by [8] provides a better characterization
of the generalization performance of architectures than Corollary 1 followed by [9] since the non-
realizable scenario we have considered will be more realistic than the realizable scenario as explained
above. Meanwhile, Corollary 2 also suggests that there exists a trade-off in terms of M between
the model convergence (i.e., the first term) and the generalization gap (i.e., the second term) when
M >

√
mC/η, which surprisingly is similar to the empirically motivated trainability and expressivity

trade-off in [7]. In addition, Corollary 2 also indicates that for architectures achieving similar values
of M, the ones with smaller condition numbers κ generally achieve better generalization performance.
Interestingly, such a result also aligns with the conclusion from [7]. Therefore, our Corollary 2 also
provides a principled justification for the training-free NAS method in [7].

4.4 Connection to Architecture Topology

Interestingly, we can prove that the condition number κ in our Corollary 2 is theoretically related to
the architecture topology, i.e., whether the architecture is wide (and shallow) or deep (and narrow),
to further support the practicality and the superiority of our Corollary 2. In particular, inspired by
the theoretical analysis from [19], we firstly analyze the eigenvalues of the NTK matrices of two
different architecture topologies (i.e., wide vs. deep architectures), which gives us an insight into the
difference between their corresponding κ. We mainly consider the following wide (i.e., f ) and deep
(i.e., f ′) architecture illustrated in Figure 3, respectively:

f(x) = 1⊤∑L
i=1 W

(i)x , f ′(x) = 1⊤(
∏L

i=1 W
(i))x (5)
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where W(i) ∈ Rn×n for any i ∈ {1, · · · , L} and every element of W(i) is independently initialized
using the standard normal distribution. Here, 1 denotes an n-dimensional vector with every element
being one. Let Θ0 and Θ′

0 be the NTK matrices of f and f ′ that are evaluated on the finite dataset
S = {(xi, yi)}mi=1, respectively, we derive the following theorem:
Theorem 3. Let dataset S be normalized using its statistical mean and covariance such that E[x] = 0

and X⊤X = I given X ≜ [x1x2 · · ·xm], we have

Θ0 = Ln · I , E [Θ′
0] = LnL · I .

Its proof is in Appendix A.4. Notably, Theorem 3 shows that the NTK matrix of the wide architecture
in (5) is guaranteed to be a scaled identity matrix, whereas the NTK matrix of the deep architecture
in (5) is a scaled identity matrix only in expectation over random initialization. Consequently, we
always have κ = 1 for the initialized wide architecture, while κ > 1 with high probability for
the initialized deep architecture. Also note that as we have discussed in Sec. 4.3, our Corollary 2
shows that (given similar values of M) an architecture with a smaller κ is likely to generalize better.
Therefore, this implies that wide architectures generally achieve better generalization performance
than deep architectures (given similar values of M). This, surprisingly, aligns with the findings from
[19] which shows that wide architectures are preferred in training-based NAS due to their competitive
performances in practice, thus further implying that our Corollary 2 is more practical and superior to
our Corollary 1. More interestingly, based on the definition of MTrace (4), Theorem 3 also indicates
that deep architectures are expected to have larger values of MTrace (due to the larger scale of E [Θ′

0]
for deep architectures) and hence achieve larger model complexities than wide architectures.

5 Hybrid Neural Architecture Search

5.1 A Unified Objective for Training-Free NAS

Our theoretical understanding of training-free NAS in Sec. 4 finally allows us to address the following
question in a principled way: How can we consistently boost existing training-free NAS algorithms?
Specifically, to realize this target, we propose to select well-performing architectures by minimizing
the upper bound on the generalization error in Corollary 2 given any training-free metric from Sec. 3.2.
We expect this choice to lead to improved performances over the method from [9] because Corollary 2
provides a more practical generalization guarantee for training-free NAS than Corollary 1 followed by
[9] (Sec. 4.3). Formally, let A be any architecture in the search space and let M be any training-free
metric from Sec. 3.2, then NAS problem can be formulated below in a unified manner:

min
A

1

2

(
m− ηM2(A)/C

)2t
+O (κ(A)/M(A)) . (6)

We further reformulate (6) into the following form:

min
A

κ(A)/M(A) + µF (M2(A)− ν) (7)

where F (x) ≜ x2t, and µ and ν are hyperparameters we introduced to absorb the impact of all other
parameters in (6). Compared with the diverse form of NAS objectives in [7–9], our (7) presents a
non-trivial unified form of NAS objectives for all the training-free metrics from Sec. 3.2, making it
easier for practitioners to deploy NAS with different types of evaluated training-free metrics. Our
NAS objective in (7) is a natural consequence of our generalization guarantee in Corollary 2 and
therefore will be more theoretically grounded, in contrast to the heuristic objective in [7]. Moreover,
our (7) advances the training-free NAS method based on MTrace from [8], because our (7) (a) is
derived from the generalization error instead of the training error (that is followed by [8]) of DNNs,
which therefore will be more sound and practical, (b) have unified all the gradient-based training-free
metrics from Sec. 3.2, and (c) have considered the impact of condition number κ which is shown to
be critical in practice (see our Appendix C.2). Above all, our unified NAS objective in (7) is expected
to be able to lead to improved performances over other existing training-free NAS methods.

5.2 Optimization and Search Algorithm

Our theoretically motivated NAS objective in (7) has unified all training-free metrics from Sec. 3.2
and improved over existing training-free NAS methods. However, its practical deployment requires
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Algorithm 1: Hybrid Neural Architecture Search (HNAS)
1: Input: Training and validation dataset, metric M evaluated on architecture pool P , F (·) for (7),

evaluation history H0 = ∅, a BO algorithm B, number of iterations/queries K
2: for iteration k = 1, . . . ,K do
3: Choose µk, νk using the BO algorithm B
4: Obtain the optimal candidate A∗

k in P by solving (7)
5: Evaluate the validation performance of A∗

k, e.g., Lval(A∗
k) after training A∗

k
6: Update the GP surrogate in the BO algorithm B using the evaluation history

Hk = Hk−1

⋃
{((µk, νk),Lval(A∗

k))}
7: end for
8: Select the final A∗ with the best validation performance, e.g., A∗ = argminA∈{A∗

k}
K
k=1

Lval(A)
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Figure 1: Spearman correlation between MTrace and other training-free metrics from Sec. 3.2, which
are evaluated in NAS-Bench-101/201. The correlation coefficient r is given in the corner of each plot.

the determination of the hyperparameters µ and ν,1 which can be non-trivial in practice. To this end,
we further introduce Bayesian optimization (BO) [20] to optimize the hyperparameters µ and ν in
order to maximize the true validation performance of the architectures selected by different µ and ν.
In particular, BO uses a Gaussian process (GP) as a surrogate to model the objective function (i.e.,
the validation performance here) in order to sequentially choose the queried inputs (i.e., the values
of µ and ν). This finally completes our theoretically grounded NAS framework called hybrid NAS
(HNAS), which not only novelly unifies all training-free metrics from Sec. 3.2 but also boosts NAS
algorithms based on these training-free metrics in a principled way (Algorithm 1).

Specifically, in every iteration k of HNAS, we firstly select the optimal candidate A∗
k by maximizing

our training-free NAS objective in (7) using the values of µ and ν queried by the BO algorithm in
the current iteration (line 3-4 of Algorithm 1). Next, we evaluate the validation performance of A∗

k
(e.g., validation error Lval(A∗

k)) and then use it to update the GP surrogate that is applied in the BO
algorithm (line 5-6 of Algorithm 1), which then will be used to choose the values of µ and ν in the next
iteration. After HNAS completes, the final selected architecture is chosen as the one achieving the best
validation performance among all the optimal candidates, e.g., A∗ = argminA∈{A∗

k}
K
k=1

Lval(A) (see
Appendix B.1 for more optimization details of Algorithm 1). Thanks to the utilization of validation
performance as the objective for BO, our HNAS is expected to be able to enjoy the advantages of
both training-free (i.e., the superior search efficiency) and training-based NAS (i.e., the remarkable
search effectiveness) as supported by our extensive empirical results in Sec. 6.4. In addition, by
novelly introducing BO to optimize the low-dimensional continuous hyperparameters µ and ν rather
than the high-dimensional discrete architectural hyperparameters in the NAS search space, HNAS
is able to avoid the issues of high-dimensional discrete optimization that standard BO algorithms
usually attain when they are directly applied for NAS [21], allowing HNAS to be more efficient and
effective in practice as empirically supported in our Sec. 6.4.

6 Experiments

6.1 Connections among Training-Free Metrics

We firstly validate the theoretical connections between MTrace and other training-free metrics from
Sec. 3.2 by examining their Spearman correlations for all architectures in NAS-Bench-101 [22] and

1Of note, we usually fix t = 1, which is already reasonably good for F (·). So, the practical deployment of
(7) will mainly be affected by the choice of µ and ν.

7



Table 1: Correlation coefficients between the test
errors evaluated on CIFAR-10 and the generaliza-
tion guarantees in Sec. 4.3 for the architectures in
NAS-Bench-101/201.

Metric NAS-Bench-101 NAS-Bench-201
Spearman Kendall’s Tau Spearman Kendall’s Tau

Realizable scenario
MGrad −0.25 −0.17 0.64 0.47
MSNIP −0.21 −0.15 0.64 0.47
MGraSP −0.45 −0.31 0.57 0.40
MTrace −0.30 −0.21 0.54 0.39

Non-realizable scenario
MGrad 0.35 0.23 0.75 0.56
MSNIP 0.37 0.25 0.75 0.56
MGraSP 0.46 0.32 0.69 0.50
MTrace 0.33 0.23 0.70 0.51

Table 2: Comparison of topology, MTrace & κ of
different architectures. The topology width/depth
of each architecture is followed by the maximum
value in the search space (separated by a slash).

Architecture Topology MTrace κ
Width Depth

NASNet 5.0/5.0 2/6 31±2 118±41
AmoebaNet 4.0/5.0 4/6 36±2 110±39
ENAS 5.0/5.0 2/6 36±2 98±33
DARTS 3.5/4.0 3/5 33±2 122±58
SNAS 4.0/4.0 2/5 31±2 126±47

WIDE 4.0/4.0 2/5 27±1 141±36
DEEP 1.5/4.0 5/5 131±16 209±107

NAS-Bench-201 [23] with CIFAR-10 [24]. Figure 1 illustrates the result where all these training-free
metrics are evaluated using a batch (with size 64) of sampled data following that of [9]. Of note, we
will follow the same approach to evaluate these training-free metrics in our following sections. The
results in Figure 1 show that MTrace and other training-free metrics from Sec. 3.2 are indeed highly
correlated since they consistently achieve high positive correlations in different search spaces. These
empirical results actually align with the interpretation of our Theorem 1 (Sec. 4.1). Moreover, the
correlation between any two training-free metrics from Sec. 3.2 is in Appendix C.1, which further
verifies the connection among all these training-free metrics. Above all, in addition to the theoretical
justification in our Theorem 1, our empirical results have also supported the connections among all
the training-free metrics from Sec. 3.2.

6.2 Generalization Guarantees for Training-Free NAS

We then demonstrate the validity of our generalization guarantees for training-free NAS (Sec. 4.3) by
examining the correlation between the generalization bound in the realizable (Corollary 1) or non-
realizable (Corollary 2) scenario and the test errors of architectures in NAS-Bench-101/201. Similar
to HNAS (Algorithm 1), we employ BO with a sufficiently large number of iterations (e.g., hundreds
of iterations) to determine the non-trivial parameters in Corollary 2. Table 1 summarizes the results on
CIFAR-10 where a higher positive correlation implies a better agreement between our generalization
guarantee and the generalization performance of architectures. Notably, the generalization bound in
the realizable scenario performs a compelling characterization of the test errors in NAS-Bench-201
with relatively high positive correlations, whereas it fails to provide a precise characterization in a
larger search space, i.e., NAS-Bench-101. Remarkably, our generalization bound in the non-realizable
scenario is able to perform consistent improvement over it by obtaining higher positive correlations.
These results imply that the Corollary 1 may only provide a good characterization for training-free
NAS in certain cases (e.g., in the small-scale search space NAS-Bench-201), whereas our Corollary
2 generally is more valid and robust in practice. As a consequence, our (6) following Corollary 2
should be able to improve over the NAS objective following Corollary 1 as we have justified in Sec. 5.
Interestingly, the comparable results achieved by all training-free metrics from Sec. 3.2 again validate
the connections among these metrics (Theorem 1). Moreover, our additional results in Appendix C.2
further confirm the validity and practicality of our generalization guarantees for training-free NAS.

6.3 Connection to Architecture Topology

To support the theoretical connections between architecture topology (wide vs. deep) and the value
of training-free metric MTrace as well as the condition number κ shown in Sec. 4.4, we compare the
topology width/depth, MTrace and κ of the architectures selected by different SOTA training-based
NAS algorithms in the DARTS search space, including NASNet [25], AmoebaNet [26], ENAS [4],
DARTS [5], and SNAS [27]. Table 2 summarizes the results where we apply the same definition
of topology width/depth in [19] (refer to [19] for more details). We also include the widest (called
WIDE) and the deepest (called DEEP) architecture in the DARTS search space into this comparison.
As shown in our Table 2, wide architectures (i.e., all architectures except DEEP) consistently achieve
lower condition number κ and smaller values of MTrace than deep architecture (i.e., DEEP), which
aligns with our theoretical insights in Sec. 4.4.

8



Table 3: Comparison of NAS algorithms in NAS-Bench-201. The result of HNAS is reported with
the mean and standard deviation of 5 independent searches and its search costs are evaluated on a
Nvidia 1080Ti. C & D in the last column denote continuous and discrete search space, respectively.

Algorithm Test Accuracy (%) Cost Method Applicable
C10 C100 IN-16 (GPU Sec.) Space

ResNet [28] 93.97 70.86 43.63 - manual -

REA† 93.92±0.30 71.84±0.99 45.15±0.89 12000 evolution C & D
RS (w/o sharing)† 93.70±0.36 71.04±1.07 44.57±1.25 12000 random C & D
REINFORCE† 93.85±0.37 71.71±1.09 45.24±1.18 12000 RL C & D
BOHB† 93.61±0.52 70.85±1.28 44.42±1.49 12000 BO+bandit C & D

ENAS‡ [4] 93.76±0.00 71.11±0.00 41.44±0.00 15120 RL C
DARTS (1st)‡ [5] 54.30±0.00 15.61±0.00 16.32±0.00 16281 gradient C
DARTS (2nd)‡ [5] 54.30±0.00 15.61±0.00 16.32±0.00 43277 gradient C
GDAS‡ [29] 93.44±0.06 70.61±0.21 42.23±0.25 8640 gradient C
DrNAS♯ [30] 93.98±0.58 72.31±1.70 44.02±3.24 14887 gradient C

NASWOT [6] 92.96±0.81 69.98±1.22 44.44±2.10 306 training-free C & D
TE-NAS [7] 93.90±0.47 71.24±0.56 42.38±0.46 1558 training-free C
KNAS [12] 93.05 68.91 34.11 4200 training-free C & D
NASI [8] 93.55±0.10 71.20±0.14 44.84±1.41 120 training-free C
GradSign [31] 93.31±0.47 70.33±1.28 42.42±2.81 - training-free C & D

HNAS (MGrad) 94.04±0.21 71.75±1.04 45.91±0.88 3010 hybrid C & D
HNAS (MSNIP) 93.94±0.02 71.49±0.11 46.07±0.14 2976 hybrid C & D
HNAS (MGraSP) 94.13±0.13 72.59±0.82 46.24±0.38 3148 hybrid C & D
HNAS (MTrace) 94.07±0.10 72.30±0.70 45.93±0.37 3006 hybrid C & D

Optimal 94.37 73.51 47.31 - - -
† Reported by Dong and Yang [23].
‡ Re-evaluated using the codes provided by Dong and Yang [23].
♯ Re-evaluated under a comparable search budget as other training-based NAS algorithms with first-order optimization,

e.g., ENAS and DARTS (1st). Note that this search budget is smaller than the one reported in its original paper and hence
will lead to decreased search performances.

6.4 Effectiveness and Efficiency of HNAS

To justify that our theoretically motivated HNAS is able to enjoy the advantages of both training-free
(i,e., the superior search efficiency) and training-based (i.e., the remarkable search effectiveness) NAS,
we compare it with other baselines in NAS-Bench-201 (Table 3). We refer to Appendix B.2 for our
experimental details. As summarized in Table 3, HNAS, surprisingly, advances both training-based
and training-free baselines by consistently selecting architectures achieving the best performances,
leading to smaller gaps toward the optimal test errors in the search space. Meanwhile, HNAS requires
at most 13× lower search costs than training-based NAS algorithms, which is even smaller than the
training-free baseline KNAS. Moreover, thanks to the superior evaluation efficiency of training-free
metrics, HNAS can be deployed efficiently in not only continuous (where search space is represented
as a supernet) but also discrete search space. As for NAS under limited search budgets (Figure 2),
HNAS also advances all other baselines by achieving improved search efficiency and effectiveness.
Appendix C.5 further includes the impressive search results achieved by HNAS on CIFAR-10/100
and ImageNet in the DARTS search space. Overall, our HNAS is indeed able to enjoy the advantages
of both training-free (i.e., the superior search efficiency) and training-based NAS (i.e., the remarkable
search effectiveness), which consistently boosts existing training-free NAS methods.

7 Conclusion & Discussion

This paper performs a unified theoretical analysis of NAS algorithms using gradient-based training-
free metrics, which allows us to (a) theoretically unveil the connections among these training-free
metrics, (b) provide theoretical guarantees for the empirically observed compelling performance of
these training-free NAS algorithms, and (c) exploit these theoretical understandings to develop a
novel framework called HNAS that can consistently boost existing training-free NAS. We expect
that our theoretical understanding to provide valuable prior knowledge for the design of training-free
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Figure 2: Comparison between HNAS (MTrace) and other NAS baselines in NAS-Bench-201 under
varying search budgets. Here, the ZERO-COST method is borrowed from [9] by using MTrace. Note
that each algorithm is reported with the mean and standard error of ten independent searches, and the
black dashed line in each plot denotes the the minimal (optimal) test error that can be achieved by the
architectures in NAS-Bench-201 on the corresponding dataset.

metrics and NAS search space in the future. Moreover, we expect our theoretical analyses for DNNs
to be capable of inspiring more theoretical understanding and improvement over existing machine
learning algorithms that are based on DNNs, e.g., the recent training-free data valuation algorithm
[32]. In addition, the impressive performance achieved by our HNAS framework is expected to be
able to encourage more attention to the integration of training-free and training-based approaches in
other fields in order to enjoy the advantages of these two types of methods simultaneously.
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Appendix A Proofs

Throughout the proofs of this paper, we use lower-case bold-faced symbols to denote column vectors
(e.g., x), and upper-case bold-faced symbols to represent matrices (e.g., A).

A.1 Proof of Theorem 1

Connecting MGrad with MTrace. As the loss function ℓ(·, ·) is assumed to be β-Lipschitz continuous
in the first argument, the following holds based on the notations in Sec. 3:

MGrad
(a)
=

∥∥∥∥∥ 1

m

m∑
i=1

∇θℓ(f(xi,θ0), yi)

∥∥∥∥∥
2

(b)

≤ 1

m

m∑
i=1

∥∇θℓ(f(xi,θ0), yi)∥2

(c)

≤ 1

m

m∑
i=1

∣∣∇f ℓ(f(xi,θ0), yi)
∣∣∥∇θf(xi,θ0)∥2

(d)

≤ β

m

m∑
i=1

∥∇θf(xi,θ0)∥2

(e)

≤ β

m

√√√√m

m∑
i=1

∥∇θf(xi,θ0)∥22

(f)
= βMTrace

(8)

where we let ∇f ℓ(f(xi,θ0), yi) be the gradient of the output of DNN model f . Note that (a) follows
from the definition of MGrad in Sec. 3.2 and (b) derives from the Minkowski inequality. In addition,
(d) is from the definition of Lipschitz continuity and (e) follows from the Cauchy-Schwarz inequality.
Finally, (f) is based on the definition of NTK matrix in Sec. 3.1 and MTrace in Sec. 3.2, i.e.,

MTrace =

√
1

m
∥Θ0∥tr =

√√√√ 1

m

m∑
i=1

∥∇θf(xi,θ0)∥22 . (9)

Let C1 ≜ β, we then have

MGrad ≤ C1MTrace . (10)

Connecting MSNIP with MGrad. We firstly introduce the following lemma.

Lemma A.1 (Laurent and Massart [33]). If x1, · · · , xk are independent standard normal random
variables, for y =

∑k
i=1 x2i and any ϵ,

P(y − k ≥ 2
√
kϵ+ 2ϵ) ≤ exp(−ϵ) .

Following the common practice in [13, 14], each element of θ0 ∈ Rd follows from the standard normal
distribution independently. We therefore can bound ∥θ0∥22 using the lemma above. Specifically, let
δ = exp(−ϵ) ∈ (0, 1), with probability at least 1− δ over random initialization, we have:

∥θ0∥22 ≤ d+ 2

√
d ln

1

δ
+ 2 ln

1

δ
. (11)
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Using the results above and following the definition of MGrad, with probability at least 1− δ over
random initialization, we have

MSNIP =
1

m

m∑
i=1

∣∣θ⊤
0 ∇θL(f(xi,θ0), yi)

∣∣
≤ 1

m

m∑
i=1

∥θ0∥2∥∇θℓ(f(xi,θ0), yi)∥2

≤

√
d+ 2

√
d ln

1

δ
+ 2 ln

1

δ
· 1

m

m∑
i=1

∥∇θℓ(f(xi,θ0), yi)∥2

≤ β

√
d+ 2

√
d ln

1

δ
+ 2 ln

1

δ
MTrace .

(12)

The last inequality follows from the same derivation in (8). Let C2 ≜ β

√
d+ 2

√
d ln 1

δ + 2 ln 1
δ ,

the following then holds with a high probability (i.e., at least 1− δ),

MSNIP ≤ C2MTrace . (13)

Connecting MGraSP and MGrad. We firstly introduce the following lemma adapted from [16].

Lemma A.2 (Lemma 1 in [16]). Let δ ∈ (0, 1). There exist the constant ρ1, ρ2 > 0 such that for any
r > 0, θ,θ′ ∈ B(θ0, r/

√
n) and any input x within the dataset, with probability at least 1− δ over

random initialization, we have

∥∇θf(x,θ)∥2 ≤ ρ1

∥∇θf(x,θ)−∇θ′f(x,θ′)∥2 ≤ ρ2 ∥θ − θ′∥2

where B(θ0, r/
√
n) ≜ {θ | ∥θ − θ0∥ ≤ r/

√
n}.

To ease the notation, we use ∇f ℓ(f(xi,θ0), yi) to denote the gradient of the output (i.e., f(xi,θ0))
from the DNN model f . According to the definition of Hessian matrix, Hi applied in MGraSP can be
computed as

Hi = ∇2
θ0
ℓ(f(xi,θ0), yi)

= ∇θ [∇f ℓ(f(xi,θ0), yi)∇θf(xi,θ0)]

= ∇2
f ℓ(f(xi,θ0), yi)∇θf(xi,θ0)∇θf(xi,θ0)

⊤ +∇f ℓ(f(xi,θ0), yi)∇2
θf(xi,θ0) .

(14)

Since ℓ(·, ·) is assumed to be γ-Lipschitz smooth and β-Lipschitz continuous in the first argument,
we can then bound the operator norm of this hessian matrix Hi induced by the input xi in the dataset
with

∥Hi∥2 =
∥∥∇2

f ℓ(f(xi,θ0), yi)∇θf(xi,θ0)∇θf(xi,θ0)
⊤ +∇f ℓ(f(xi,θ0), yi)∇2

θf(xi,θ0)
∥∥
2

≤
∣∣∇2

f ℓ(f(xi,θ0), yi)
∣∣ ∥∥∇θf(xi,θ0)∇θf(xi,θ0)

⊤∥∥
2
+ |∇f ℓ(f(xi,θ0), yi)|

∥∥∇2
θf(xi,θ0)

∥∥
2

≤ γ
∥∥∇θf(xi,θ0)∇θf(xi,θ0)

⊤∥∥
2
+ β

∥∥∇2
θf(xi,θ0)

∥∥
2

= γ ∥∇θf(xi,θ0)∥22 + β
∥∥∇2

θf(xi,θ0)
∥∥
2

≤ γρ21 + βρ2
(15)

where the last inequality results from Lemma A.2 and is satisfied with probability at least 1− δ over
random initialization.
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Finally, let δ′ ∈ (0, 1), based on the definition of MGraSP, the following then holds with probability
at least 1− (m+ 1)δ′ over random initialization,

MGraSP =
1

m

∣∣∣∣∣
m∑
i=1

θ⊤
0 (Hi∇θL(f(xi,θ0), yi))

∣∣∣∣∣
≤ 1

m
∥θ0∥2

m∑
i=1

∥Hi∇θL(f(xi,θ0), yi)∥2

≤ 1

m
∥θ0∥2

m∑
i=1

∥Hi∥2∥∇θL(f(xi,θ0), yi)∥2

≤ (γρ21 + βρ2)

√
d+ 2

√
d ln

1

δ′
+ 2 ln

1

δ′
· 1

m

m∑
i=1

∥∇θℓ(f(xi,θ0), yi)∥2

≤ β(γρ21 + βρ2)

√
d+ 2

√
d ln

1

δ′
+ 2 ln

1

δ′
MTrace .

(16)

Similarly, let δ = (m+ 1)δ′ and C3 = β(γρ21 + βρ2)

√
d+ 2

√
d ln m+1

δ + 2 ln m+1
δ , with a high

probability (i.e., at least 1− δ), we finally have
MGraSP ≤ C3MTrace , (17)

which concludes our proof.
Remark. In addition to the provable theoretical connection between MTrace and other training-free
metrics from Sec. 3.2, we can further reveal the connection between MTrace and recently proposed
training-free metric MKNAS in [12]. Specifically, let the training-free metric MKNAS be defined as

MKNAS ≜

√√√√√
∣∣∣∣∣∣ 1

m2

m∑
i,j=1

∇θf(xi,θ0)⊤∇θf(xj ,θ0)

∣∣∣∣∣∣ . (18)

Of note, we have adapted the original KNAS metric in [12] to match the mathematical form of other
training-free metrics in Sec. 3.2. Interestingly, training-free metric MKNAS is also gradient-based. As
a result, we can also theoretically connect MKNAS with MTrace in a similar way:

M2
KNAS =

∣∣∣∣∣∣ 1

m2

m∑
i,j=1

∇θf(xi,θ0)
⊤∇θf(xj ,θ0)

∣∣∣∣∣∣
≤ 1

m2

√√√√m2

m∑
i,j=1

(∇θf(xi,θ0)⊤∇θf(xj ,θ0))
2

=
1

m
∥Θ0∥F ≤ 1

m
∥Θ0∥tr = M2

Trace

(19)

where the first inequality follows from the Cauchy-Schwarz inequality and the second equality is
based on the definition of Frobenius norm. The last inequality derives from the matrix inequality
∥ ·∥F ≤ ∥·∥tr while the last equality is obtained based on the definition of MTrace. Therefore, we have
the following theoretical connection between MKNAS and MTrace, which we will validate empirically
in Appendix C.1.

MKNAS ≤ MTrace . (20)
Consequently, the theoretical results and the HNAS framework in this paper are also applicable to the
training-free metric MKNAS. We have validated part of them empirically in Appendix C.
Remark. Note that our assumptions about the Lipschitz continuity and the Lipschitz smoothness of
loss function ℓ(·, ·) are usually satisfied for commonly employed loss functions in practice, e.g., Cross
Entropy and Mean Square Error. For example, Shu et al. [8] have justified that these two commonly
applied loss functions indeed satisfy the Lipschitz continuity assumption. As for their Lipschitz
smoothness, following a similar analysis in [8], we can also verify that there exists a constant c > 0
such that ∥∇2

f ℓ(f, ·)∥2 ≤ c for both Cross Entropy and Mean Square Error.
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A.2 Proof of Theorem 2

A.2.1 Estimating the Rademacher Complexity of DNNs

Note that the Rademacher complexity of a hypothesis class G over dataset S = {(xi, yi)}mi=1 of size
m is usually defined as

RS(G) = Eϵ∈{±1}m

[
sup
g∈G

1

m

m∑
i=1

ϵig(xi)

]
, (21)

with ϵi ∈ {±1}. Let θ0 be the initialized parameters of DNN model f , we then define the following
hypotheses that will be used to prove our lemmas and theorems:

F ≜ {x 7→ f(x,θt) : t > 0}, F lin ≜ {x 7→ f(x,θ0) +∇θf(x,θ0)
⊤(θt − θ0) : t > 0} (22)

where ft ∈ F and f lin
t ∈ F lin are the function determined by the DNN model f and its corresponding

linearization at step t of their optimization, respectively. Of note, the θt in ft and f lin
t are not identical

and should instead be determined by the optimization of ft and f lin
t independently. Interestingly, ft

can then be well characterized by f lin
t as proved in the following lemma.

Lemma A.3 (Theorem H.1 [16]). Let n1 = · · · = nL−1 = n and assume λmin(Θ∞) > 0. There
exist the constant c > 0 and N > 0 such that for any n > N and any x ∈ Rn0 with ∥x∥2 ≤ 1, the
following holds with probability at least 1− δ over random initialization when applying gradient
descent with learning rate η < η0,

sup
t≥0

∥∥ft − f lin
t

∥∥
2
≤ c√

n
.

Remark. According to [16], λmin(Θ∞) > 0 usually holds especially when any input x from dataset
S satisfies ∥x∥2 = 1. In practice, ∥x∥2 = 1 can be achieved by normalizing each input x from
real-world dataset using its norm ∥x∥2, which typically servers as the data preprocessing procedure
for the model training of DNNs.

Moreover, we will show that the Rademacher complexity of the DNN model during model training
(i.e., F ) can also be bounded using its linearization model (i.e., F lin) based on the following lemmas.

Lemma A.4. With Lemma A.3, there exists a constant c > 0 such that with probability at least 1− δ
over random initialization, the following holds

RS(F) ≤ RS(F lin) +
c√
n
.

Proof. Based on Lemma A.3, given ϵi ∈ {±1}, with probability at least 1− δ, there exists a constant
c > 0 such that

ϵift ≤ ϵif
lin
t +

c√
n
. (23)

Following the definition of Rademacher complexity, we can bound the complexity of F by

RS(F) = Eϵ∈{±1}m

[
sup
f∈F

1

m

m∑
i=1

ϵif(xi,θ)

]

≤ Eϵ∈{±1}m

[
sup

f lin∈F lin

1

m

m∑
i=1

(
ϵif

lin(xi) +
c√
n

)]

≤ Eϵ∈{±1}m

[
sup

f lin∈F lin

1

m

m∑
i=1

ϵif
lin(xi)

]
+ Eϵ∈{±1}m

[
c√
n

]
≤ RS(F lin) +

c√
n
,

(24)

which completes the proof.

19



Lemma A.5. Let f(X,θ0) ≜ [f(x1,θ0) · · · f(xm,θ0)]
⊤ and y ≜ [y1 · · · ym]⊤ be the outputs of

DNN model f at initialization and the target labels of a dataset S = {(xi, yi)}mi=1, respectively.
Given MSE loss L =

∑m
i=1 ∥f lin(xi,θ) − yi∥22/(2m) and NTK matrix at initialization Θ0 =

∇θf(X,θ0)∇θf(X,θ0)
⊤, assume λmin(Θ0) > 0, for any t > 0, the following holds when applying

gradient descent on f lin(x,θ) with learning rate η < m/λmax(Θ0):

∥θt − θ0∥2 ≤ ∥θ∞ − θ0∥2 =

√
ŷ⊤Θ−1

0 ŷ

where θt denotes the parameters of f lin at step t of its model training and ŷ ≜ y−f(X,θ0). Besides,
λmax(Θ0) and λmin(Θ0) denote the maximum and minimum eigenvalue of matrix Θ0.

Proof. Following the update of gradient descent on MSE with learning rate η < m/λmax(Θ0), we
have

θt+1 = θt −
η

m
∇θf(X,θ0)

⊤ (f lin(X,θt)− y
)
. (25)

Note that ∇θf(X,θ0) is a m × d matrix and f(X,θ0), f
lin(X,θ0),y are m-dimensional column

vectors. By subtracting θ0, multiplying ∇θf(X,θ0) and then adding f(X,θ0) on both sides of the
equality above, we achieve

f(X,θ0) +∇θf(X,θ0)(θt+1 − θ0) = f(X,θ0) +∇θf(X,θ0)(θt − θ0)−
η

m
Θ0

(
f lin(X,θt)− y

)
,

(26)
which can be simplified as

f lin(X,θt+1) = f lin(X,θt)−
η

m
Θ0

[
f lin(X,θt)− y

]
=
(
I− η

m
Θ0

)
f lin(X,θt) +

η

m
Θ0y .

(27)

By recursively applying the equality above for t+ 1 times, we finally achieve

f lin(X,θt+1)
(a)
=
(
I− η

m
Θ0

)t+1

f lin(X,θ0) +

t∑
j=0

(
I− η

m
Θ0

)j ( η

m
Θ0y

)
(b)
=
(
I− η

m
Θ0

)t+1

f(X,θ0) +
[
I− (I− η

m
Θ0)

t+1
] ( η

m
Θ0

)−1 η

m
Θ0y

(c)
=
(
I− η

m
Θ0

)t+1 (
f(X,θ0)− y

)
+ y

(28)

where (b) follows from the sum of geometric series for matrix with η < m/λmax(Θ0) as well as the
fact that f lin(X,θ0) = f(X,θ0). Note that this result can be integrated into (25) and provide the
following explicit form of θt+1 − θ0 after applying gradient descent for t+ 1 times:

θt+1 − θ0 =

t∑
k=0

θk+1 − θk

=
η

m
∇θf(X,θ0)

⊤
t∑

k=0

(
I− η

m
Θ0

)k
(y − f(X,θ0))

=
η

m
∇θf(X,θ0)

⊤
t∑

k=0

(I− η

m
Θ0)

kŷ

(29)

Since Θ0 is symmetric, we can alternatively represent Θ0 as Θ0 = VΛV⊤ using principal com-
ponent analysis (PCA) where V and Λ denotes the matrix of eigenvectors {vi}mi=1 and eigenvalues
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{λi}mi=1, respectively. Based on this representation, we have

∥θt+1 − θ0∥2 =
√
(θt+1 − θ0)⊤(θt+1 − θ0)

=
η

m

√√√√ŷ⊤
t∑

k=0

(I− η

m
Θ0)k∇θf(X,θ0)∇θf(X,θ0)⊤

t∑
k′=0

(I− η

m
Θ0)k

′ ŷ

=
η

m

√√√√ŷ⊤
t∑

k=0

(I− η

m
Θ0)kΘ0

t∑
k′=0

(I− η

m
Θ0)k

′ ŷ

=
η

m

√√√√ŷ⊤
t∑

k=0

(I− η

m
VΛV⊤)kVΛV⊤

t∑
k′=0

(I− η

m
VΛV⊤)k′ ŷ

=
η

m

√√√√ŷ⊤V

t∑
k=0

(I− η

m
Λ)kV⊤VΛV⊤V

t∑
k′=0

(I− η

m
Λ)k′V⊤ŷ

=
η

m

√√√√ŷ⊤V

t∑
k=0

(I− η

m
Λ)kΛ

t∑
k′=0

(I− η

m
Λ)k′V⊤ŷ

=
η

m

√√√√ m∑
i=1

λi

[
t∑

k=0

(1− η

m
λi)k

]2
(v⊤

i ŷ)
2 .

(30)

Since η < m/λmax(Θ0) and λmin(Θ0) > 0, we have 0 < 1− ηλi/m < 1 and hence

∥θt − θ0∥2 =
η

m

√√√√ m∑
i=1

λi

[
t−1∑
k=0

(1− η

m
λi)k

]2
(v⊤

i ŷ)
2

≤ η

m

√√√√ m∑
i=1

λi

[
t∑

k=0

(1− η

m
λi)k

]2
(v⊤

i ŷ)
2

= ∥θt+1 − θ0∥2

(31)

We complete the proof by recursively applying the inequalities above

∥θt − θ0∥2 ≤ ∥θ∞ − θ0∥2

=
η

m

√√√√ m∑
i=1

λi

[ ∞∑
k=0

(1− η

m
λi)k

]2
(v⊤

i ŷ)
2

=
η

m

√√√√ m∑
i=1

λi

[
1

ηλi/m

]2
(v⊤

i ŷ)
2

=

√√√√ m∑
i=1

λ−1
i (v⊤

i ŷ)
2

=

√
ŷ⊤Θ−1

0 ŷ

(32)

Lemma A.6 (Awasthi et al. [34]). Let G ≜ {x 7→ wTx : ∥w∥2 ≤ R} be a family of linear functions
defined over Rd with bounded weight. Then the empirical Rademacher complexity of G for m samples

21



S ≜ (x1, · · · ,xm) admits the following upper bounds:

RS(G) ≤
R

m
∥X⊤∥2,2

where X is the d×m-matrix with xis as columns: X ≜ [x1 · · ·xm].

Based on our Lemma A.4 and Lemma A.5, we can finally bound the Rademacher complexity of a
DNN model during its model training (i.e., F) using its linearization model (i.e., F lin). Specifically,
under the conditions in Theorem A.3 and Lemma A.5, there exist the constant c > 0 and N > 0 such
that for any n > N , with probability at least 1− δ over initialization, we have

RS(F)
(a)

≤ RS(F lin) +
c√
n

(b)
= Eϵ∈{±1}m

[
sup
t≥0

1

m

m∑
i=1

ϵi
(
f(xi,θ0) +∇θf(xi,θ0)

⊤(θt − θ0)
)]

+
c√
n

(c)
= Eϵ∈{±1}m

[
sup
t≥0

1

m

m∑
i=1

ϵi∇θf(xi,θ0)
⊤(θt − θ0)

]
+

1

m

m∑
i=1

Eϵ∈{±1}m [ϵi] f(xi,θ0) +
c√
n

(d)

≤ ∥θ∞ − θ0∥2∥∇θf(X,θ0)∥2,2
m

+
c√
n

(e)

≤ ∥∇θf(X,θ0)∥2,2
m

√
ŷ⊤Θ−1

0 ŷ +
c√
n

(f)

≤
√
κλ0 ·

√
ŷ⊤Θ−1

0 ŷ

m
+

c√
n

(33)
where (d) derives from Lemma A.6 and (f) derives from the following inequalities based on the
definition κ ≜ λmax(Θ0)/λmin(Θ0) and λ0 ≜ λmin(Θ0).

∥∇θf(X,θ0)∥2,2 =

√√√√ m∑
i=1

∥∇θf(xi,θ0)∥22

=

√√√√ m∑
i=1

λi(Θ0)

≤
√
mκλ0 .

(34)

A.2.2 Deriving the Generalization Bound for DNNs using Training-free Metrics

Define the generalization error on the data distribution D as LD(g) ≜ E(x,y)∼Dℓ(g(x), y) and the
empirical error on the dataset S = {(xi, yi)}mi=1 that is randomly sampled from D as LS(g) ≜∑m

i=1 ℓ(g(xi), yi). Given the loss function ℓ(·, ·) and the Rademacher complexity of any hypothesis
class G, the generalization error on the hypothesis class G can then be estimated by the empirical
error using the following lemma.
Lemma A.7 (Mohri et al. [18]). Suppose the loss function ℓ(·, ·) is bounded in [0, 1] and is β-Lipschitz
continuous in the first argument. Then with probability at least 1− δ over dataset S of size m:

sup
g∈G

{LD(g)− LS(g)} ≤ 2βRS(G) + 3
√
ln(2/δ)/(2m) .

Lemma A.8. For a symmetric matrix A ∈ Rm×m with eigenvalues {λi}mi=1 in an ascending order,
define κ ≜ λm/λ1, the following inequality holds if λ1 > 0,

∥A∥tr

∥∥A−1
∥∥

tr ≤ m2κ .
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Proof. Since eigenvalues {λi}mi=1 are in an ascending order, we have

λm

κ
≤ λi ≤ λ1κ . (35)

Based on the results above, we can connect the matrix norm ∥A∥tr and ∥A−1∥tr with

∥A∥tr

∥∥A−1
∥∥

tr = (

m∑
i=1

λi) · (
m∑
i=1

λ−1
i ) ≤ (mλ1κ) ·

mκ

λm
=

m2κ2

κ
= m2κ , (36)

which concludes the proof.

We are now able to prove Theorem 2 by combining the results in Lemma A.7 and (33). Specifically,
under the conditions in Theorem A.3 and Lemma A.5, there exist constant c,N > 0 such that for any
ft ∈ F and any n > N , the following holds with probability at least 1−2δ over random initialization,

LD(ft) ≤ LS(ft) + 2βRS(F) + 3

√
ln(2/δ)

2m

≤ LS(ft) + 2β
√
κλ0 ·

√
ŷ⊤Θ−1

0 ŷ

m
+

2βc√
n

+ 3

√
ln(2/δ)

2m
.

(37)

Assume f(x,θ0) and y are bounded in [0, 1] for any pair (x, y) in the dataset S, let {vi}mi=1 and
{λi}mi=1 be the eigenvectors and eigenvalues of Θ0, respectively, we then have ŷ ∈ [−1, 1]m and the
following inequalities:

ŷ⊤Θ−1
0 ŷ =

m∑
i=1

(v⊤
i ŷ)

2

λi
≤

m∑
i=1

∥vi∥22∥ŷ∥22
λi

≤
m∑
i=1

m

λi
. (38)

Based on the fact that ∥Θ0∥tr =
∑m

i=1 λi and Lemma A.8, we finally achieve√
ŷ⊤Θ−1

0 ŷ

m
≤
√∥∥Θ−1

0

∥∥
tr ≤

m
√
κ√

∥Θ0∥tr
=

√
mκ

MTrace
. (39)

By introducing (39) into (37), with λ0 ≤ 1, we have

LD(ft) ≤ LS(ft) +
2βκ

√
m

MTrace
+

2βc√
n

+ 3

√
ln(2/δ)

2m
. (40)

Let M be any metric introduced in Sec. 3.2, based on the results in our Theorem 1 and the definition
of O(·), the following inequality then holds with a high probability using the result above:

LD(ft) ≤ LS(ft) +O(κ/M) , (41)

which finally concludes our proof of Theorem 2.

Remark. Our (41) still holds when λ0 ≤ z(z ̸= 1), i.e., by simply placing z into our (40). Though
our conclusion is based on the initialization using standard normal distribution and over-parameterized
DNNs, our empirical results in Appendix C.6 show that this conclusion can also hold for DNNs
initialized using other methods and also DNNs of small layer width.

A.3 Proof of Corollary 2

To prove our Corollary 2, we firstly consider the convergence of f lin
t under the same conditions in

Theorem 2. Specifically, following the notations and results in Lemma A.5, let {vi}mi=1 and {λi}mi=1
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be the eigenvectors and eigenvalues of Θ0, respectively, we have

LS(f
lin
t )

(a)
=

1

2m

∥∥f lin(X,θt)− y
∥∥2
2

(b)
=

1

2m

∥∥∥∥(I− η

m
Θ0

)t
(f(X,θ0)− y)

∥∥∥∥2
2

(c)
=

1

2m

∥∥∥∥(I− η

m
Θ0

)t
ŷ

∥∥∥∥2
2

(d)
=

1

2m

m∑
i=1

(
1− η

m
λi

)2t (
v⊤
i ŷ
)2

(e)

≤ 1

2m

m∑
i=1

(
1− η

m
λi

)2t
∥vi∥22 ∥ŷ∥

2
2

(42)

where (d) follows the same derivation in (30). Moreover, based on ŷ ∈ [−1, 1]m and the fact that
∥vi∥2 = 1, for any t > 0 (i.e., t = 1, 2, · · · ), we naturally have

LS(f
lin
t )

(a)

≤ 1

2

m∑
i=1

(
1− η

m
λi

)2t
(b)

≤ 1

2

(
m∑
i=1

1− η

m
λi

)2t

(c)
=

1

2

(
m− η

m
∥Θ0∥tr

)2t
(d)
=

1

2

(
m− ηM2

Trace

)2t
(e)

≤ 1

2

(
m− ηM2/C

)2t

(43)

where (e) is based on the results in our Theorem 1: For any training-free metric M introduced in
Sec. 3.2, there exists a constant C such that the following holds with a high probability,

M2 ≤ CM2
Trace ⇒ m− ηM2/C ≥ m− ηM2

Trace . (44)

Based on Lemma A.3 and the fact that loss function ℓ(f, y) = (f − y)2/2 is 1-Lipschitz continuous
in the first argument, the following then holds with a high probability∣∣LS(ft)− LS(f

lin
t )
∣∣ ≤ ∣∣ft − f lin

t

∣∣ ≤ O(
1√
n
) . (45)

By introducing the results above into our Theorem 2 with 1/
√
n being absorbed in O(·), we finally

achieve the following results with a high probability,

LD(ft) ≤ LS(ft) +O(κ/M) ≤ LS(f
lin
t ) +O(κ/M)

≤ 1

2

(
m− ηM2/C

)2t
+O(κ/M) ,

(46)

which thus concludes our proof.

A.4 Proof of Theorem 3

Let W(i)
j· denote the j-th row of matrix W(i), based on the definition of f and f ′ in Sec. 4.4, we can

compute the gradient (represented as a column vector) of W(i)
j· for function f and f ′ respectively as

below
∇

W
(i)
j·
f(x) = x

∇
W

(i)
j·
f ′(x) =

(
i−1∏
k′=1

W(k′)x

)
1⊤

(
L∏

k=i+1

W(k)

)
·j

(47)
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Figure 3: Two different architecture topologies for our analysis.

where
(∏L

k=i+1 W
(k)
)
·j

is defined as the j-th column of matrix
(∏L

k=i+1 W
(k)
)

, i.e.,(
L∏

k=i+1

W(k)

)
·j

≜
(
W(i+1) · · ·W(L)

)
·j
= W(L)W(L−1) · · ·W(i+1)

·j , (48)

Consequently, the NTK matrix of initialized wide architecture can be represented as

Θ0(x,x
′) =

L∑
i=1

n∑
j=1

(
∇

W
(i)
j·
f(x)

)⊤
∇

W
(i)
j·
f(x′)

=

L∑
i=1

n∑
j=1

x⊤x′ = nL · x⊤x′ .

(49)

Meanwhile, the NTK matrix of initialized deep architecture can be represented as

Θ′
0(x,x

′) =

L∑
i=1

n∑
j=1

(
∇

W
(i)
j·
f ′(x)

)⊤
∇

W
(i)
j·
f ′(x)

=

L∑
i=1

n∑
j=1

( i−1∏
k′=1

W(k′)x

)
1⊤

(
L∏

k=i+1

W(k)

)
·j

⊤(
i−1∏
k′=1

W(k′)x′

)
1⊤

(
L∏

k=i+1

W(k)

)
·j

=

L∑
i=1

n∑
j=1

1⊤

(
L∏

k=i+1

W(k)

)
·j

2

x⊤

(
i−1∏
k′=1

W(k′)

)⊤( i−1∏
k′=1

W(k′)

)
x′

= x⊤
L∑

i=1

n∑
j=1

1⊤

(
L∏

k=i+1

W(k)

)
·j

2(
i−1∏
k′=1

W(k′)

)⊤( i−1∏
k′=1

W(k′)

)
x′ .

(50)

Since each element in W(i) is initialized using standard normal distribution, we have following
simplified expectation by exploring the fact that E

[
W(i)

]
= 00⊤ and E

[(
W(i)

)⊤
W(i)

]
= nI.

E

( i−1∏
k′=1

W(k′)

)⊤ i−1∏
k′=1

W(k′)

 = E
[(

W(1)
)⊤

· · ·
(
W(i−1)

)⊤
W(i−1) · · ·W(1)

]

= E
[(

W(1)
)⊤

E
[
· · ·E

[(
W(i−1)

)⊤
W(i−1)

]
· · ·
]
W(1)

]
= E

[(
W(1)

)⊤
E
[
· · ·E

[(
W(i−2)

)⊤
(nI)W(i−2)

]
· · ·
]
W(1)

]
= ni−1I .

(51)
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Similarly, we also have

E


1⊤

(
L∏

k=i+1

W(k)

)
·j

2
 = 1⊤E

( L∏
k=i+1

W(k)

)
·j

( L∏
k=i+1

W(k)

)
·j

⊤
1

= 1⊤E
[
W(L)E

[
· · ·E

[
W

(i+1)
·j

(
W

(i+1)
·j

)⊤]
· · ·
](

W(L)
)⊤]

1

= 1⊤E
[
W(L)E

[
· · ·E

[
W(i+2)I

(
W(i+2)

)⊤]
· · ·
](

W(L)
)⊤]

1

= 1⊤E
[
W(L)E

[
· · ·E

[
W(i+3)nI

(
W(i+3)

)⊤]
· · ·
](

W(L)
)⊤]

1

= nl−i−11⊤1

= nL−i .
(52)

Since W(i) in each layer is initialized independently, we achieve the following result by introducing
the equality above and expectation over model parameters into (47).

E [Θ′
0(x,x

′)] = x⊤E

 L∑
i=1

n∑
j=1

1⊤

(
L∏

k=i+1

W(k)

)
·j

2(
i−1∏
k′=1

W(k′)

)⊤( i−1∏
k′=1

W(k′)

)x′

= x⊤

 L∑
i=1

n∑
j=1

E


1⊤

(
L∏

k=i+1

W(k)

)
·j

2
E

( i−1∏
k′=1

W(k′)

)⊤ i−1∏
k′=1

W(k′)


x′

= x⊤

 L∑
i=1

n∑
j=1

nL−i · ni−1I

x′

= LnLx⊤x′ .
(53)

By exploiting the fact that X⊤X = I with X ≜ [x1x2 · · ·xm], we finally conclude the proof by

Θ0(X,X) = Ln · I
E [Θ′

0(X,X)] = LnL · I .
(54)

Appendix B Optimization and Experimental Details

B.1 Optimization Details for Algorithm 1

Solution to the Training-Free NAS Objective (7). Following the common practice in [6, 12],
to solve (7) for the every iteration of our Algorithm 1 in practice, we independently and randomly
sample a large pool of architectures from the search space to evaluate their training-free metrics and
then select the architecture achieving the optimum value of (7) (given the values of µ and ν) from all
sampled architectures. Meanwhile, following the common practice in [9], the training-free metrics of
these sampled architectures are evaluated using a batch of sampled data as introduced in Sec. 6.1.

Introduction to the BO Applied in HNAS. BO is a type of gradient-free optimization algorithm
aiming to optimize a black-box or non-differentiable objective function by iteratively selecting an
input (to only evaluate/query its function value) that intuitively trades off between sampling an input
likely achieving optimum (i.e., exploitation) given the current belief of the function modeled by a
Gaussian process (GP) vs. improving the GP belief over the entire input domain (i.e., exploration)
to guarantee finding the global optimum, which recently has been widely extended to various real-
world problem settings in order to achieve better optimization in practice [35–47]. Since we adopt
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the non-differentiable validation performance (i.e., validation error) as the objective function to be
optimized (over µ and ν) in our Algorithm 1, BO will naturally be a better choice to find the optimal
µ and ν compared with gradient-based optimization algorithms, and therefore has been applied in our
HNAS framework. Specifically, in every iteration k of Algorithm 1, a GP belief with mean u(µ, ν)
and variance σ2(µ, ν) for the entire input domain is firstly obtained following the Equation (1) in
[48] (i.e., by letting input x in [48] be the column vector (µ, ν)⊤ and the function value y in [48] be
Lval(A)) using the historical evaluations Hk−1 = {((µi, νi),Lval(A

∗
i ))}

k−1
i=1 (this corresponds to line

6 in Algorithm 1 for iteration k − 1). 2 Then, the mean u(µ, ν) and standard deviation σ(µ, ν) from
the resulting GP belief are used to construct an acquisition function such as the expected improvement
(EI) from [49] or the upper confidence bound (UCB) u(µ, ν) +

√
βσ(µ, ν) from [48] where the

parameter β > 0 is set to trade off between exploitation vs. exploration for guaranteeing no regret
asymptotically with high probability. Finally, an input (i.e., µk, νk) will be selected (for querying) by
maximizing the acquisition function within the entire input domain (i.e., line 3 in Algorithm 1), e.g.,
(µk, νk) = argmax(µ,ν) u(µ, ν) +

√
βσ(µ, ν) for UCB. The acquisition function in BO is usually

differentiable and thus gradient-based optimization algorithms (e.g., L-BFGS and gradient ascent)
can be applied to maximize it. We refer to [48] for more technical details about the BO algorithm
based on UCB and [50] for the implementation of BO that has been used in our experiments.

B.2 Experimental Details in NAS-Bench-201

In our experiments on NAS-Bench-201, we set the number of iterations K for Algorithm 1 to be 20.
In addition, for every iteration of Algorithm 1, we independently and randomly sample a pool of 2,000
architectures from the search space and then choose the architecture enjoying the optimum value of
(7) from all sampled architectures (e.g., 2000×k architectures in total). After choosing this candidate
architecture, we query the validation performance of this architecture on CIFAR-10 after 12-epoch
training (i.e., “hp=12”) from the tabular data in NAS-Bench-201, which then will be employed to
update the GP surrogate applied in BO. After completing 20 iterations of our Algorithm 1, there are
(a) 40,000 sampled architectures with evaluated training-free metrics which can already cover all the
architectures in NAS-Bench-201 (consisting of 15,625 architectures) with a high probability, and (b)
20 architectures with evaluated validation performance which can already allow our HNAS to select
architectures achieving competitive performances. Overall, our (7) and Algorithm 1 can be solved
both efficiently and effectively following our aforementioned optimization techniques.

Appendix C More Empirical Results

C.1 Connections among Training-Free Metrics

Besides the theoretical (Theorem 1) and empirical (Sec. 4.1) connections between MTrace and other
gradient-based training-free metrics from Sec. 3.2, we further show in Table 4 that any two metrics
from Sec. 3.2 are highly correlated, i.e., they consistently achieve large positive correlations in both
NAS-Bench-101 and NAS-Bench-201. Similar to the results in our Sec. 4.1, the correlation between
MGraSP and any other training-free metric is generally lower than other pairs, which may result from
the hessian matrix that has only been applied in MGraSP. To figure out whether our Theorem 1 is
also applicable to non-gradient-based training-free metrics, we then provide the correlation between
MFisher [51], MSynFlow [52], MNASWOT [6] and MTrace [8] for the comparison. Interestingly, both
MFisher and MSynFlow achieve higher positive correlations with MTrace than MNASWOT in general.
According to their mathematical forms in the corresponding papers, such a phenomenon may result
from the fact that MFisher and MSynFlow have contained certain gradient information while MNASWOT

only relies on the outputs of each layer in an initialized architecture. 3 These results therefore imply
that our Theorem 1 may also provide valid theoretical connections for the training-free metrics that
are not gradient-based but still contain certain gradient information.

2Since BO is usually applied to solve maximization problem, we use the historical evaluations Hk−1 =
{((µi, νi),−Lval(A

∗
i ))}k−1

i=1 for BO instead in order to maximize −Lval(A) in practice.
3Of note, the so-called gradient information contained in MFisher and MSynFlow is different from the commonly

used gradient of initialized model parameters that is derived from loss function or the output of DNN models.
So, MFisher and MSynFlow are taken as the non-gradient-based training-free metrics instead in this paper.
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Table 4: Connection between any two training-free metrics (i.e., M1 and M2 in the table) from
Sec. 3.2 in NAS-Bench-101/201. Note that each training-free metric is evaluated using a batch of
randomly sampled data from CIFAR-10 following that of [9].

M1 M2
NAS-Bench-101 NAS-Bench-201

Pearson Spearman Kendall’s Tau Pearson Spearman Kendall’s Tau

Gradient-based training-free metrics
MGrad MSNIP 0.98 0.98 0.87 1.00 1.00 0.97
MGrad MGraSP 0.35 0.61 0.43 0.60 0.92 0.77
MGrad MTrace 0.98 0.98 0.87 0.98 0.97 0.85
MSNIP MGraSP 0.34 0.59 0.42 0.55 0.92 0.77
MSNIP MTrace 0.94 0.93 0.77 0.97 0.96 0.83
MGraSP MTrace 0.37 0.57 0.40 0.69 0.89 0.73

MKNAS MGrad 0.95 0.96 0.83 0.88 0.94 0.80
MKNAS MSNIP 0.91 0.92 0.75 0.87 0.94 0.78
MKNAS MGraSP 0.37 0.65 0.46 0.45 0.87 0.69
MKNAS MTrace 0.96 0.96 0.84 0.89 0.97 0.86

Non-gradient-based training-free metrics
MFisher MTrace 0.69 0.97 0.85 0.30 0.78 0.69
MSynFlow MTrace 0.02 0.50 0.34 0.07 0.49 0.35
MNASWOT MTrace 0.08 0.11 0.08 0.10 0.32 0.22
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Figure 4: (a) Varying architecture performances under different value of training-free metrics in
NAS-Bench-201. Note that the x-axis denotes the averaged value of training-free metrics over the
architectures grouped in the same bin and y-axis denoted the test error evaluated on CIFAR-10.
(b) Correlation between the condition numbers and the true generalization performances of the
architectures within the same bin (i.e., the y-axis). Note that the x-axis denotes the corresponding 20
bins in Figure 4 (a).

C.2 Valid Generalization Guarantees for Training-Free NAS

To further support that our Corollary 2 presents a more practical and valid generalization guarantee
for training-free NAS in practice, we examine the true generalization performances of all candidate
architectures under their different value of training-free metrics in Figure 4 (a) and exhibit the
correlation between the condition number and the true generalization performances of all candidate
architectures in Figure 4 (b). Specifically, we group the value of training-free metrics in NAS-Bench-
201 into 20 bins and then plot the test errors on CIFAR-10 of all candidate architectures within the
same bin into the blue vertical lines in Figure 4 (a). Besides, we plot the averaged test errors over the
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Table 5: Correlation between the test errors of candidate architectures in NAS-Bench-201 and their
training-free metrics applied in several different scenarios. We refer to Sec. 4.3 for more details about
the trade-off and condition number κ applied in the following scenarios.

Dataset Scenario Spearman Kendall’s Tau
MGrad MSNIP MGraSP MTrace MGrad MSNIP MGraSP MTrace

C10

Realizable 0.637 0.639 0.566 0.538 0.469 0.472 0.400 0.387
Realizable + Trade-off 0.642 0.641 0.570 0.549 0.475 0.474 0.403 0.397
Realizable + κ 0.724 0.728 0.658 0.657 0.530 0.533 0.474 0.474
Non-realizable 0.750 0.748 0.686 0.697 0.559 0.556 0.501 0.512

C100

Realizable 0.638 0.638 0.571 0.535 0.473 0.475 0.409 0.385
Realizable + Trade-off 0.642 0.645 0.578 0.546 0.476 0.481 0.414 0.394
Realizable + κ 0.716 0.719 0.649 0.651 0.527 0.529 0.469 0.470
Non-realizable 0.740 0.746 0.680 0.686 0.552 0.557 0.498 0.504

IN-16

Realizable 0.578 0.578 0.550 0.486 0.430 0.433 0.397 0.354
Realizable + Trade-off 0.588 0.589 0.566 0.526 0.438 0.441 0.408 0.382
Realizable + κ 0.646 0.649 0.612 0.587 0.472 0.474 0.443 0.423
Non-realizable 0.682 0.685 0.655 0.660 0.505 0.506 0.480 0.482

architectures within the same bin into the black dash lines in Figure 4 (a). Besides, each correlation
between condition number and test error in Figure 4 (b) is computed using the candidate architectures
within the same bin.

Notably, as illustrated by the black dash lines in Figure 4 (a), there consistently exists a trade-off for all
the training-free metrics in Sec. 3.2. Specifically, there exists an optimal value Mopt for each training-
free metric M that is capable of achieving the best generalization performance in the search space.
When M < Mopt, architecture with a larger value of M typically enjoys a better generalization
performance. On the contrary, when M > Mopt, architecture with a smaller value of M generally
achieves a better generalization performance. Interestingly, these results perfectly align with our
Corollary 2. Furthermore, Figure 4 (b) shows that the condition number is indeed highly correlated to
the generalization performance of candidate architectures and a smaller condition number is generally
preferred in order to select well-performing architectures in training-free NAS. More interestingly,
similar phenomenons can also be found in [8] and [7]. Remarkably, our Corollary 2 can provide
theoretically grounded interpretations for these results, whereas Corollary 1 fails to characterize these
phenomenons. Consequently, our Corollary 2 is shown to be more practical and valid in practice.

Based on the conclusions above, we then compare the impacts of the trade-off and condition number
κ mentioned above by examining the correlation between the true generalization performances of
candidate architectures and their training-free metrics applied in different scenarios. Here, we use
the same parameters applied in Sec. 6.2 for Corollary 2. Table 5 summarizes the comparison. Note
that the non-realizable scenario is equivalent to the realizable scenario + trade-off + κ as suggested
by our Corollary 2. As revealed in Table 5, both trade-off and condition number κ are necessary
to achieve an improved characterization of architecture performances over the one in the realizable
scenario followed by [9], which again verifies the practicality and validity of our Corollary 2. More
interestingly, condition number κ is shown to be more essential than the trade-off for training-free
NAS in order to improve the correlations in the realizable scenario. By integrating both trade-off
and condition number κ into the realizable scenario, the non-realizable scenario consistently enjoys
the highest correlations on different datasets, which also further verifies the improvement of our
training-free NAS objective (7) over the one used in [9].

C.3 Transferability of Training-Free NAS

In practice, the transferability of the architectures selected by both training-based and training-free
NAS algorithms has been widely verified [5, 7, 8]. So, in this section, we also verify the transferability
of our generalization guarantees for training-free NAS. Specifically, we examine the deviation of the
correlation between the architecture performance and the generalization bounds in Sec. 4.3 using
training-free metrics evaluated on different datasets. That is, training-free metrics and architecture
performance usually will be evaluated on different datasets. Table 6 summarizes the results using
CIFAR-10/100 (C10/100) and ImageNet-16-120 (IN-16) [53] in NAS-Bench-201 where we employ
the same parameters as Sec. 6.2 for Corollary 2. Notably, nearly the same correlations (i.e., with
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Table 6: Deviation of the correlation between the test errors in NAS-Bench-201 and the generalization
bounds in Sec. 4.3 using training-free metrics evaluated on various datasets. Each correlation is
reported with the mean and standard deviation using the metrics evaluated on CIFAR-10/100 and
ImageNet-16-120. Small standard deviations imply strong transferability.

Dataset Training-free Metrics
MGrad MSNIP MGraSP MTrace

Realizable scenario
C10 0.64±0.01 0.64±0.01 0.58±0.02 0.55±0.01
C100 0.64±0.01 0.64±0.01 0.58±0.03 0.54±0.02
IN-16 0.57±0.01 0.57±0.01 0.52±0.03 0.47±0.02

Non-realizable scenario
C10 0.75±0.00 0.75±0.00 0.69±0.01 0.69±0.00
C100 0.74±0.00 0.74±0.00 0.69±0.01 0.69±0.01
IN-16 0.69±0.00 0.69±0.00 0.63±0.01 0.65±0.00

Table 7: Comparison of the number of queries (to evaluate the validation performances of trained
architectures) required by different NAS algorithms in NAS-Bench-201. The performance of each
algorithm is reported with the mean and standard deviation of five independent searches.

Algorithm Test Accuracy (%)
# Queries

C10 C100 IN-16

REA 93.92±0.30 71.84±0.99 45.15±0.89 102
RS (w/o sharing) 93.70±0.36 71.04±1.07 44.57±1.25 106
REINFORCE 93.85±0.37 71.71±1.09 45.24±1.18 103

HNAS (MGrad) 94.04±0.21 71.75±1.04 45.91±0.88 20
HNAS (MSNIP) 93.94±0.02 71.49±0.11 46.07±0.14 20
HNAS (MGraSP) 94.13±0.13 72.59±0.82 46.24±0.38 20
HNAS (MTrace) 94.07±0.10 72.30±0.70 45.93±0.37 20
Optimal 94.37 73.51 47.31 -

extremely small deviations) are achieved for training-free metrics evaluated on different datasets. This
implies that the training-free metrics computed on a dataset S can also provide a good characterization
of the architecture performance evaluated on another dataset S′. Therefore, the architectures selected
by training-free NAS algorithms on S are also likely to produce a compelling performance on S′.
That is, the transferability of the architectures selected by training-free NAS is guaranteed.

C.4 Additional Comparison in NAS-Bench-201

In addition to the comparison of search performances and search costs (measured by GPU seconds)
in Table 3, we further provide the comparison of the number of queries required by different NAS
algorithms in Table 7. The queries compared here are applied to evaluate the validation performance
of the selected architectures after training, which is typically avoided by training-free NAS algorithms.
Consequently, here, we mainly compare HNAS with other training-based NAS algorithms. As shown
in Table 7, HNAS can consistently achieve improved search performances with fewer number of
queries, which also aligns with the results in our Table 3. This therefore further confirms the superior
search efficiency and the remarkable search effectiveness of our HNAS framework.

C.5 HNAS in the DARTS Search Space

To support the effectiveness and efficiency of our HNAS, we also apply HNAS in the DARTS [5]
search space to find well-performing architectures on CIFAR-10/100 and ImageNet [54]. Specifically,
we sample a pool of 60000 architecture to evaluate their training-free metrics on CIFAR-10 in
order to maintain high computational efficiency for these training-free metrics. For the results on
CIFAR-10/100, we then apply the BO algorithm for 25 iterations with a 10-epoch model training
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Table 8: Performance comparison among state-of-the-art (SOTA) neural architectures on CIFAR-
10/100. The performance of the final architectures selected by HNAS is reported with the mean and
standard deviation of five independent evaluations. The search costs are evaluated on a single Nvidia
1080Ti. Note that HNAS (C10 or C100) denoted the architecture selected by our HNAS using the
dataset CIFAR-10 or CIFAR-100, respectively.

Algorithm Test Error (%) Params (M) Search Cost
(GPU Hours) Search Method

C10 C100 C10 C100

DenseNet-BC [56] 3.46∗ 17.18∗ 25.6 25.6 - manual

NASNet-A [25] 2.65 - 3.3 - 48000 RL
AmoebaNet-A [26] 3.34±0.06 18.93† 3.2 3.1 75600 evolution
PNAS [57] 3.41±0.09 19.53∗ 3.2 3.2 5400 SMBO
ENAS [4] 2.89 19.43∗ 4.6 4.6 12 RL
NAONet [58] 3.53 - 3.1 - 9.6 NAO

DARTS (2nd) [5] 2.76±0.09 17.54† 3.3 3.4 24 gradient
GDAS [29] 2.93 18.38 3.4 3.4 7.2 gradient
NASP [59] 2.83±0.09 - 3.3 - 2.4 gradient
P-DARTS [60] 2.50 - 3.4 - 7.2 gradient
DARTS- (avg) [61] 2.59±0.08 17.51±0.25 3.5 3.3 9.6 gradient
SDARTS-ADV [62] 2.61±0.02 - 3.3 - 31.2 gradient
R-DARTS (L2) [63] 2.95±0.21 18.01±0.26 - - 38.4 gradient
DrNAS [30] 2.46±0.03 - 4.1 - 14.4 gradient

TE-NAS♯ [7] 2.83±0.06 17.42±0.56 3.8 3.9 1.2 training-free
NASI-ADA [8] 2.90±0.13 16.84±0.40 3.7 3.8 0.24 training-free

HNAS (C10) 2.62±0.04 17.10±0.18 3.4 3.5 2.4 hybrid
HNAS (C100) 2.78±0.05 16.29±0.14 3.7 3.8 2.7 hybrid
† Reported by Dong and Yang [29] with their experimental settings.
∗ Obtained by training corresponding architectures without cutout [55] augmentation.
♯ Reported by Shu et al. [8] with their experimental settings.

for the selected architectures in our HNAS (Algorithm 1). As for the results on ImageNet, we apply
the BO algorithm for 10 iterations with a 3-epoch model training for the selected architectures in
our HNAS. We follow [5] to construct 20-layer final selected architectures with an auxiliary tower
of weight 0.4 for CIFAR-10 (0.6 for CIFAR-100) located at 13-th layer and 36 initial channels.
We evaluate these architectures on CIFAR-10/100 using stochastic gradient descent (SGD) of 600
epochs with a learning rate cosine scheduled from 0.025 to 0 for CIFAR-10 (from 0.035 to 0.001
for CIFAR-100), momentum 0.9, weight decay 3×10−4and batch size 96. Both Cutout [55], and
ScheduledDropPath linearly increased from 0 to 0.2 for CIFAR-10 (from 0 to 0.3 for CIFAR-100) are
employed for regularization purposes on CIFAR-10/100. As for the evaluation on ImageNet, we train
the 14-layer architecture from scratch for 250 epochs with a batch size of 1024. The learning rate is
warmed up to 0.7 for the first 5 epochs and then decreased to zero with a cosine schedule. We adopt
the SGD optimizer with 0.9 momentum and a weight decay of 3×10−5.

The results on CIFAR-10/100 and ImageNet are summarized in Table 8 and Table 9, respectively. As
shown in Table 8, both our HNAS (C10) and HNAS (C100) are capable of achieving state-of-the-art
performance on CIFAR-10 and CIFAR-100, correspondingly, while incurring lower search costs than
other training-based NAS algorithms. Even compared with other training-free NAS baselines, e.g.,
TE-NAS, our HNAS can still enjoy a compelling search cost. Overall, these results further validate
that our HNAS is indeed able to enjoy the superior search efficiency of training-free NAS and also
the remarkable search effectiveness of training-based NAS. More interestingly, our HNAS (C10) can
achieve a lower test error on CIFAR-10 but a higher test error on CIFAR-100 when compared with
HNAS (C100). This result indicates that similar to training-based NAS algorithms, directly searching
on the target dataset is also able to improve the final performance in HNAS. By exploiting this
advantage over other training-free NAS baselines, our HNAS thus is capable of selecting architectures
achieving higher performances, as shown in Table 8. Similar results are also achieved on ImageNet
as shown in Table 9. Overall, these results have further supported the superior search efficiency and
remarkable search effectiveness of our HNAS that we have verified in Sec. 6.4.
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Table 9: Performance comparison among SOTA image classifiers on ImageNet.

Algorithm Test Error (%) Params
(M)

+×
(M)

Search Cost
(GPU Days)Top-1 Top-5

Inception-v1 [64] 30.1 10.1 6.6 1448 -
MobileNet [65] 29.4 10.5 4.2 569 -
ShuffleNet 2×(v2) [66] 25.1 7.6 7.4 591 -

NASNet-A [25] 26.0 8.4 5.3 564 2000
AmoebaNet-A [26] 25.5 8.0 5.1 555 3150
PNAS [57] 25.8 8.1 5.1 588 225
MnasNet-92 [67] 25.2 8.0 4.4 388 -

DARTS [5] 26.7 8.7 4.7 574 4.0
SNAS (mild) [27] 27.3 9.2 4.3 522 1.5
GDAS [29] 26.0 8.5 5.3 581 0.21
ProxylessNAS [68] 24.9 7.5 7.1 465 8.3
DARTS- [61] 23.8 7.0 4.5 467 4.5
SDARTS-ADV [62] 25.2 7.8 5.4 594 1.3
DrNAS [30] 23.7 7.1 5.7 - 4.6

TE-NAS (C10) [7] 26.2 8.3 5.0 - 0.05
TE-NAS (ImageNet) [7] 24.5 7.5 5.4 - 0.17
NASI-ADA [8] 25.0 7.8 4.9 559 0.01

HNAS (C100) 24.8 7.8 5.2 601 0.1
HNAS (ImageNet) 24.3 7.4 5.1 575 0.5

C.6 Ablation Studies

Ablation Study on Initialization Method. While our theoretical analyses throughout this paper
are based on the initialization using the standard normal distribution (Sec. 3), 4 we wonder whether
our theoretical results are also applicable to DNNs using different initialization methods, e.g., Xavier
[70] and Kaiming [71] initialization. Specifically, we compare the correlation between the true
generalization performances of all candidate architectures in NAS-Bench-201 and the generalization
guarantees in Sec. 4.3 that are evaluated using different initialization methods. Table 10 summarizes
the comparison. Here, we use the same parameters applied in Sec. 6.2 for Corollary 2. Notably,
Table 10 shows that our generalization guarantees for training-free NAS, i.e., Corollary 1, 2, can also
perform well for training-free NAS using DNNs initialized with different methods, indicating a wider
application of our generalization guarantees in Sec. 4.3. Of note, LeCun initialization can achieve the
best results among the three initialization methods in Table 10 since it satisfies our assumption about
the initialization of DNNs. As an implication, LeCun initialization is more preferred when using
the training-free metrics from Sec. 3.2 to characterize the architecture performances in training-free
NAS.

Ablation Study on Batch Size. Theoretically, the training-free metrics from Sec. 3.2 are defined
over the whole training dataset. In practice, we usually only apply a batch of randomly sampled data
points to evaluate these training-free metrics in order to achieve a desirable computational efficiency,
which follows [9]. To investigate the impact of batch size on these metrics, we examine the correlation
between the true generalization performances of all candidate architectures in NAS-Bench-201 and
their generalization guarantees in the non-realizable scenario under varying batch sizes. Table 11
summarizes the results. Here, we use the same parameters applied in Sec. 6.2 for Corollary 2. Besides
the impact of batch size on training-free metrics, we also include the impact of batch size on condition
number κ in this table. Specifically, in the upper part of Table 11, the correlations are evaluated
using a batch size of 64 for κ and varying batch sizes for any training-free metric M from Sec. 3.2.
Meanwhile, in the lower part of Table 11, the correlations are evaluated using varying batch sizes
for κ and a batch size of 64 for any training-free metric M. Notably, Table 11 shows that similar
results will be achieved even when training-free metrics are evaluated under varying batch sizes,

4Note that this initialization is equivalent to the LeCun initialization [69] according to [13].
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Table 10: Correlation between the test errors (on CIFAR-10) of all architectures in NAS-Bench-201
and our generalization guarantees in Sec. 4.3 that are evaluated on DNNs using different initialization
methods.

Initialization Spearman Kendall’s Tau
MGrad MSNIP MGraSP MTrace MGrad MSNIP MGraSP MTrace

Realizable scenario
LeCun [69] 0.637 0.639 0.566 0.538 0.469 0.472 0.400 0.387
Xavier [70] 0.608 0.627 0.449 0.465 0.445 0.463 0.316 0.334
He [71] 0.609 0.615 0.340 0.460 0.446 0.454 0.242 0.334

Non-realizable scenario
LeCun [69] 0.750 0.748 0.686 0.697 0.559 0.556 0.501 0.512
Xavier [70] 0.676 0.685 0.615 0.635 0.493 0.501 0.442 0.460
He [71] 0.607 0.611 0.505 0.569 0.436 0.439 0.358 0.407

Table 11: Correlation between the test errors (on CIFAR-10) of all architectures in NAS-Bench-201
and their generalization guarantees in the non-realizable scenario under varying batch size.

Batch Size Spearman Kendall’s Tau
MGrad MSNIP MGraSP MTrace MGrad MSNIP MGraSP MTrace

Batch size 64 for κ and varying batch sizes for any M
4 0.737 0.741 0.671 0.684 0.547 0.550 0.487 0.501
8 0.739 0.743 0.676 0.689 0.549 0.552 0.492 0.506

16 0.747 0.748 0.685 0.690 0.556 0.556 0.499 0.507
32 0.750 0.748 0.687 0.690 0.558 0.556 0.502 0.506
64 0.750 0.748 0.686 0.697 0.559 0.556 0.501 0.512

Varying batch sizes for κ and batch size 64 for any M
4 0.578 0.585 0.569 0.509 0.416 0.421 0.402 0.362
8 0.597 0.603 0.591 0.542 0.429 0.433 0.419 0.386

16 0.628 0.633 0.620 0.582 0.462 0.455 0.442 0.414
32 0.663 0.666 0.645 0.621 0.479 0.481 0.462 0.445
64 0.750 0.748 0.686 0.697 0.559 0.556 0.501 0.512

whereas κ evaluated under varying batch sizes will lead to different results, indicating that κ is more
sensitive to batch size than training-free metrics. As an implication, while a small batch size is also
able to perform well in practice, a large batch size is more preferred when using our generalization
guarantees for training-free NAS.

Ablation Study on Layer Width. While our theoretical analyses are based on over-parameterized
DNNs, i.e., n > N in our Theorem 2, we are also curious about how the layer width will influence
our empirical results. In particular, we examine the correlation between the true generalization
performances of all candidate architectures in NAS-Bench-201 and their generalization guarantee in
the non-realizable scenario under varying layer width. Similar to the ablation study on batch size, we
investigate the impacts of layer width on the training-free metrics from Sec. 3.2 and the condition
number κ separately. Table 12 summarizes the results. Here, we use the same parameters applied in
Sec. 6.2 for Corollary 2. As shown in Table 12, our generalization guarantee in the non-realizable
scenario also performs well when layer width becomes smaller. Surprisingly, similar results can
be achieved for training-free metrics evaluated under varying layer widths, whereas a larger layer
width for training-free metrics typically leads to marginally higher correlations in Table 12. On the
contrary, a larger layer width for κ leads to lower correlations in Table 12. This may result from the
similar behavior that can be achieved by layer width and topology width since both layer width and
topology width are used to measure the width of DNN but in totally different perspectives. Therefore,
increasing layer width will make deep architectures (in terms of topology) more indistinguishable
from wide architectures (in terms of topology) and hence make it harder to apply our generalization
guarantee in Corollary 2 to characterize the architecture performances in a search space. As an
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Table 12: Correlation between the test errors (on CIFAR-10) of all architectures in NAS-Bench-201
and their generalization guarantees in the non-realizable scenario under varying layer widths, which
are measured by the number of initial channels in our experiments. Larger initial channels indicates a
large layer width.

Init Channels Spearman Kendall’s Tau
MGrad MSNIP MGraSP MTrace MGrad MSNIP MGraSP MTrace

4 channels for κ and varying channels for any M
4 0.744 0.746 0.688 0.732 0.550 0.552 0.499 0.539
8 0.750 0.753 0.707 0.744 0.556 0.559 0.515 0.550

16 0.753 0.753 0.728 0.750 0.558 0.559 0.535 0.556
32 0.755 0.756 0.736 0.752 0.560 0.562 0.543 0.558

Varying channels for κ and 32 channels for any M
4 0.755 0.756 0.736 0.752 0.560 0.562 0.543 0.558
8 0.720 0.722 0.700 0.709 0.529 0.531 0.512 0.522

16 0.698 0.700 0.677 0.681 0.511 0.514 0.492 0.498
32 0.686 0.688 0.664 0.664 0.501 0.503 0.481 0.484

Table 13: Correlation between the test errors of all architectures in NAS-Bench-201 and our general-
ization guarantees in Sec. 4.3 using training-free metrics MKNAS, MFisher, MSynFlow and MNASWOT
that are evaluated on various datasets. Each correlation is reported with the mean and standard
deviation using the metrics evaluated on CIFAR-10/100 and ImageNet-16-120.

Dataset Spearman Kendall’s Tau
MKNAS MFisher MSynFlow MNASWOT MKNAS MFisher MSynFlow MNASWOT

Realizable scenario
C10 0.53±0.02 0.39±0.01 0.78±0.00 0.09±0.02 0.39±0.02 0.29±0.01 0.58±0.00 0.10±0.00
C100 0.53±0.03 0.39±0.01 0.76±0.00 0.09±0.02 0.38±0.02 0.29±0.01 0.57±0.00 0.11±0.01
IN-16 0.46±0.02 0.32±0.01 0.75±0.00 0.16±0.02 0.33±0.02 0.24±0.01 0.56±0.00 0.15±0.02

Non-realizable scenario
C10 0.66±0.02 0.51±0.00 0.81±0.00 0.05±0.00 0.49±0.02 0.37±0.00 0.61±0.00 0.03±0.00
C100 0.67±0.03 0.51±0.01 0.80±0.02 0.05±0.01 0.49±0.02 0.37±0.00 0.60±0.00 0.03±0.00
IN-16 0.62±0.04 0.44±0.00 0.78±0.00 0.05±0.01 0.45±0.03 0.32±0.00 0.59±0.00 0.03±0.00

implication, a large layer width for training-free metrics and a smaller layer width for condition
number κ are more preferred when applying our generalization guarantees for training-free NAS in
practice.

Ablation Study on Generalization Guarantees and HNAS Using Non-Gradient-Based Training-
Free Metrics. As Appendix C.1 has validated that our Theorem 1 may also provide valid theoretical
connections for certain non-gradient-based training-free metrics, we wonder whether our theoretical
generalization guarantees and HNAS based on Theorem 1 are also applicable to these non-gradient-
based training-free metrics. In particular, we firstly examine the correlation between the true
generalization performances of all candidate architectures in NAS-Bench-201 and their generalization
(Sec. 4.3) using training-free metrics MFisher, MSynFlow and MNASWOT. Table 13 summarizes the
results. Here, we use the same parameters applied in Sec. 6.2 for Corollary 2. While MFisher and
MSynFlow enjoy higher correlation to MTrace than MNASWOT in Appendix C.1, our generalization
guarantees also performs better when using MFisher and MSynFlow. We then apply our HNAS based
on these training-free metrics in NAS-Bench-201 and the Table 14 summarizes the search results.
Similarly, our HNAS based on MFisher and MSynFlow can also find better-performing architectures
than HNAS (MNASWOT). Surprisingly, HNAS (MSynFlow) can even achieve competitive results when
compared with HNAS using gradient-based training-free metrics. These results therefore indicate that
our HNAS sometimes may also be able to improve over training-free NAS using non-gradient-based
training-free metrics especially when these non-gradient-based training-free metrics contain certain
gradient information.
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Table 14: Comparison among HNAS using different training-free metrics in NAS-Bench-201. The
performance of each HNAS variant is reported with the mean and standard deviation of five indepen-
dent searches and the search costs are evaluated on a single Nvidia 1080Ti.

Algorithm Test Accuracy (%) Search Cost
C10 C100 IN-16 (GPU Sec.)

HNAS (MGrad) 94.04±0.21 71.75±1.04 45.91±0.88 3010
HNAS (MSNIP) 93.94±0.02 71.49±0.11 46.07±0.14 2976
HNAS (MGraSP) 94.13±0.13 72.59±0.82 46.24±0.38 3148
HNAS (MTrace) 94.07±0.10 72.30±0.70 45.93±0.37 3006

HNAS (MKNAS) 94.19±0.06 72.94±0.52 46.31±0.38 3081

HNAS (MFisher) 93.28±0.73 69.42±1.36 42.85±2.09 3309
HNAS (MSynFlow) 94.13±0.00 72.50±0.00 45.47±0.00 3615
HNAS (MNASWOT) 92.10±0.62 66.81±0.32 39.26±0.72 2832

Optimal 94.37 73.51 47.31 -

Table 15: Comparison between HNAS and its training-free variant in NAS-Bench-201.

Algorithm Test Accuracy (%)
C10 C100 IN-16

κ/MTrace 93.50 69.78 43.73
HNAS (MTrace) 94.10±0.16 72.48±0.95 46.30±0.17

Optimal 94.37 73.51 47.31

Ablation Study on Optimization Process of HNAS. In this section, we examine the evolution
of the correlation between the test errors of candidate architectures in the NAS search space and
their generalization guarantees in the non-realizable scenario with the increasing BO iterations in our
HNAS framework. Figure 5 illustrates the results in NAS-Bench-201 with CIFAR-10 dataset and
training-free metric MTrace. Note that in every BO iteration of Figure 5, the Spearman correlation
we reported corresponds to the pair of hyperparameters µ and ν that achieves the best validation
performance in the query history. As shown in Figure 5, our HNAS framework, interestingly, is
indeed selecting better-performing architectures by selecting hyperparameters µ and ν that can
achieve higher Spearman correlation in the search space. These results therefore further justify the
advantages of introducing BO algorithms with training-based performances into training-free NAS
for better characterization.

Ablation Study on Training-Free Variant of HNAS. According to (7) in our main paper, a
completely training-free metric can be produced by simply specifying the values of µ and ν with
prior knowledge. For example, by setting µ = 0, we can obtain the training-free metric κ/MTrace.
However, obtaining prior knowledge regarding the best choice of µ and ν for NAS is non-trivial.
Therefore, tuning µ and ν would be a better alternative to achieve more competitive search results
in practice. To demonstrate this, we compare the performance of the architecture selected from
training-free metric κ/MTrace vs. our standard HNAS framework in Table 15. Notably, the results
in Table 15 demonstrate that tuning µ and ν based on training-based performances can indeed lead
to improved search results and therefore will be a better alternative than pre-defining µ and ν for
a completely training-free NAS, which further justifies the essence of combining training-free and
training-based methods (as one of our major contributions) in HNAS.

Ablation Study on BO algorithm in HNAS. To investigate the influence of different BO algorithms
(i.e., different acquisition functions) on the optimization part of our HNAS, we compare the search
results obtained from using different acquisition functions (i.e., expected improvement (EI) vs. upper
confidence bound (UCB)) with HNAS(MTrace) and HNAS(MGrad) on NAS-Bench-201 in Table
16. Since the default hyperparameters for different acquisition functions in [50] have already been
tuned for a variety of tasks, we directly make use of them in our experiments without any changes.
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Figure 5: Evolution of the correlation between the test errors (on CIFAR-10) of all architectures in
NAS-Bench-201 and their generalization guarantees (using MTrace) in the non-realizable scenario
with the BO iterations in our HNAS framework.

Table 16: Comparison among HNAS using different acquisition functions in NAS-Bench-201. The
performance of each HNAS variant is reported with the mean and standard deviation of five indepen-
dent searches.

Algorithm Test Accuracy (%)
C10 C100 IN-16

HNAS (MGrad) w/ EI 94.04±0.21 71.75±1.04 45.91±0.88
HNAS (MGrad) w/ UCB 94.05±0.18 72.04±1.18 45.81±0.88

HNAS (MTrace) w/ EI 94.07±0.10 72.30±0.70 45.93±0.37
HNAS (MTrace) w/ UCB 94.10±0.16 72.48±0.95 46.30±0.17

Optimal 94.37 73.51 47.31

Interestingly, the results in Table 16 show that different acquisition functions (i.e., different BO
algorithms) typically have limited influence on our HNAS framework. That is, our HNAS is shown
to be relatively robust to the change of acquisition function in BO.
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