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Abstract
This paper presents the private-outsourced-
Gaussian process-upper confidence bound (PO-
GP-UCB) algorithm, which is the first algo-
rithm for privacy-preserving Bayesian optimiza-
tion (BO) in the outsourced setting with a prov-
able performance guarantee. We consider the
outsourced setting where the entity holding the
dataset and the entity performing BO are repre-
sented by different parties, and the dataset cannot
be released non-privately. For example, a hospi-
tal holds a dataset of sensitive medical records
and outsources the BO task on this dataset to an
industrial AI company. The key idea of our ap-
proach is to make the BO performance of our
algorithm similar to that of non-private GP-UCB
run using the original dataset, which is achieved
by using a random projection-based transforma-
tion that preserves both privacy and the pairwise
distances between inputs. Our main theoretical
contribution is to show that a regret bound similar
to that of the standard GP-UCB algorithm can be
established for our PO-GP-UCB algorithm. We
empirically evaluate the performance of our PO-
GP-UCB algorithm with synthetic and real-world
datasets.

1. Introduction
Bayesian optimization (BO) has become an increasingly
popular method for optimizing highly complex black-box
functions mainly due to its impressive sample efficiency.
Such optimization problems appear frequently in various
applications such as automated machine learning (ML),
robotics, sensor networks, among others (Shahriari et al.,
2016). However, despite its popularity, the classical setting
of BO does not account for privacy issues, which arise due
to the widespread use of ML models in applications dealing
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with sensitive datasets such as health care (Yu et al., 2013),
insurance (Chong et al., 2005) and fraud detection (Ngai
et al., 2011). A natural solution is to apply the cryptographic
framework of differential privacy (DP) (Dwork et al., 2016),
which has become the state-of-the-art technique for private
data release and has been widely adopted in ML (Sarwate &
Chaudhuri, 2013).

To this end, a recent work (Kusner et al., 2015) proposed
a DP variant of the Gaussian process-upper confidence
bound (GP-UCB) algorithm, which is a well-known BO
algorithm with theoretical performance guarantee (Srinivas
et al., 2010). Kusner et al. (2015) consider the common BO
task of hyperparameter tuning for ML models and introduce
methods for privatizing the outputs of the GP-UCB algo-
rithm (the optimal input hyperparameter setting found by the
algorithm and the corresponding output measurement) by
releasing them using standard DP mechanisms. However, in
many scenarios, BO is performed in the outsourced setting,
in which the entity holding the sensitive dataset (referred
to as the curator hereafter) and the entity performing BO
(referred to as the modeler hereafter) are represented by dif-
ferent parties with potentially conflicting interests. In recent
years, such modelers (i.e., commercial companies) provid-
ing general-purpose optimization as a service have become
increasingly prevalent, such as SigOpt which uses BO as
a commercial service for black-box global optimization by
providing query access to the users (Dewancker et al., 2016),
and Google Cloud AutoML which offers the optimization
of the architectures of neural networks as a cloud service.
Unfortunately, the approach of Kusner et al. (2015) requires
the modeler and the curator to be represented by the same
entity and therefore both parties must have complete access
to the sensitive dataset and full understanding of the BO
algorithm, thus rendering it inapplicable in the outsourced
setting. Some examples of such settings are given below:

(a) A hospital is trying to find out which patients are likely to
be readmitted soon based on the result of an expensive med-
ical test (Yu et al., 2013). Due to cost and time constraints,
the hospital (curator) is only able to perform the test for
a limited number of patients, and thus outsources the task
of selecting candidate patients for testing to an industrial
AI company (modeler). In this case, the inputs to BO are
medical records of individual patients and the function to
maximize (the output measurement) is the outcome of the
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medical test for different patients, which is used to assess
the possibility of readmission. The hospital is unwilling to
release the medical records, while the AI company does not
want to share the details of their proprietary algorithm.

(b) A bank aims to identify the loan applicants with the
highest return on investment and outsources the task to a
financial AI consultancy. In this case, each input to BO is the
data of a single loan applicant and the output measurement
to be maximized is the return on investment for different
applicants. The bank (curator) is unable to disclose the
raw data of the loan applicants due to privacy and security
concerns, whereas the AI consultancy (modeler) is unwilling
to share the implementation of their selection strategy.

(c) A real estate agency attempts to locate the cheapest pri-
vate properties in an urban city. Since evaluating every
property requires sending an agent to the corresponding lo-
cation, the agency (curator) outsources the task of selecting
candidate properties for evaluation to an AI consultancy
(modeler) to save resources. Each input to BO is a set of
features representing a single property and the function to
minimize (the output measurement) is the evaluated prop-
erty price. The agency is unable to disclose the particulars of
their customers due to legal implications, while the AI con-
sultancy refuses to share their decision-making algorithm.

In all of these scenarios, the curator is unable to release the
original dataset due to privacy concerns, and therefore has
to provide a transformed privatized dataset to the modeler.
Then, the modeler can perform BO (specifically, the GP-
UCB algorithm) on the transformed dataset (the detailed
problem setting is described in Section 2 and illustrated in
Fig. 1). A natural choice for the privacy-preserving transfor-
mation is to use standard DP methods such as the Laplace
or Gaussian mechanisms (Dwork & Roth, 2014). However,
the theoretically guaranteed convergence of the GP-UCB al-
gorithm (Srinivas et al., 2010) is only valid if it is run using
the original dataset. Therefore, as a result of the privacy-
preserving transformation required in the outsourced setting,
it is unclear whether the theoretical guarantee of GP-UCB
can be preserved and thus whether reliable performance
can be delivered. This poses an interesting research ques-
tion: How do we design a privacy-preserving algorithm for
outsourced BO with a provable performance guarantee?

To address this challenge, we propose the private-
outsourced-Gaussian process-upper confidence bound (PO-
GP-UCB) algorithm (Section 3), which is the first algorithm
for BO with DP in the outsourced setting with a provable
performance guarantee1. The key idea of our approach is
to make the GP predictions and hence the BO performance

1While the setting of the recent work of Nguyen et al. (2018)
resembles ours, the authors use a self-proposed notion of privacy
instead of the widely recognized DP and protect the privacy of
only the output measurements.
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Figure 1. Visual illustration of the problem setting.

of our algorithm similar to those of non-private GP-UCB
run using the original dataset. To achieve this, instead of
standard DP methods, we use a privacy-preserving trans-
formation based on random projection (Johnson & Linden-
strauss, 1984), which approximately preserves the pairwise
distances between inputs. We show that preserving the pair-
wise distances between inputs leads to preservation of the
GP predictions and therefore the BO performance in the
outsourced setting (compared with the standard setting of
running non-private GP-UCB on the original dataset). Our
main theoretical contribution is to show that a regret bound
similar to that of the standard GP-UCB algorithm can be
established for our PO-GP-UCB algorithm. We empirically
evaluate the performance of our PO-GP-UCB algorithm
with synthetic and real-world datasets (Section 4).

2. Notations and Preliminaries
Problem Setting. Privacy-preserving BO in the outsourced
setting involves two parties: the curator who holds the sensi-
tive dataset (e.g., a list of medical records), and the modeler
who performs the outsourced BO on the transformed dataset
provided by the curator (see Fig. 1 for a visual illustration
of this setting). The curator holds the original dataset repre-
sented as a set X ⊂ Rd formed by n d-dimensional inputs.
The curator and the modeler intend to maximize an unknown
expensive-to-evaluate objective function f defined over X .
At the beginning, the curator performs a privacy-preserving
transformation of the original dataset X to obtain a trans-
formed dataset Z ⊂ Rr formed by n r-dimensional inputs.
As a result, every original input x ∈ X has an image, which
is the corresponding transformed input z ∈ Z . Then, the
curator releases the transformed dataset Z to the modeler,
who can subsequently start to run the BO algorithm on Z .
In each iteration t = 1, . . . , T , the modeler selects a trans-
formed input zt ∈ Z to query and notifies the curator about
the choice of zt. Next, the curator identifies xt which is
the preimage of zt under the privacy-preserving transfor-
mation2, and then computes f(xt) to yield a noisy output
measurement: yt , f(xt)+εGP , in which εGP ∼ N (0, σ2

n)
is a zero-mean Gaussian noise with noise variance σ2

n. We

2We assume that X and Z describe the entire optimization
domain, i.e., every zt ∈ Z has a preimage xt ∈ X .
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assume that yt is unknown to the curator in advance and
is computed only when requested by the modeler, which
is reasonable in all motivating scenarios in Section 1. The
curator then sends yt to the modeler for performing the next
iteration of BO. We have assumed that in contrast to the
input xt, the noisy output measurement yt does not contain
sensitive information and can thus be non-privately released.
This assumption is reasonable in our setting, e.g., if yt rep-
resents the outcome of a medical test, revealing yt does not
unveil the identity of the patient. We leave the extension of
privately releasing yt for future work (see Section 5).

Differential Privacy (DP). Differential privacy (Dwork
et al., 2016) has become the state-of-the-art technique for
private data release. DP is a cryptographic framework which
provides rigorous mathematical guarantees on privacy, typi-
cally by adding some random noise during the execution of
the data release algorithm. DP has been widely adopted by
the ML community (see the work of Sarwate & Chaudhuri
(2013) for a detailed survey). Intuitively, DP promises that
changing a single input of the dataset imposes only a small
change in the output of the data release algorithm, hence
the output does not depend significantly on any individual
input. As a result, an attacker is not able to tell if an input
is changed in the dataset just by looking at the output of
the data release algorithm. To define DP, we first need to
introduce the notion of neighboring datasets. Following
the prior works on DP (Blocki et al., 2012; Hardt & Roth,
2012), we define two neighboring datasets as those differing
only in a single row (i.e., a single input) with the norm of
the difference bounded by 1:

Definition 1. Let X ,X ′ ∈ Rn×d denote two datasets
viewed as matrices3 with d-dimensional inputs {x(i)}

n
i=1

and {x′(i)}
n
i=1 as rows respectively. We call datasets X and

X ′ neighboring if there exists an index i∗ ∈ 1, . . . , n such
that ‖x(i∗) − x

′
(i∗)‖ ≤ 1, and ‖x(j) − x

′
(j)‖ = 0 for any

index j ∈ 1, . . . , n, j 6= i∗.

A randomized algorithm is differentially private if, for any
two neighboring datasets, the distributions of the outputs of
the algorithm calculated on these datasets are similar:

Definition 2. A randomized algorithm M is (ε, δ)-
differentially private for ε > 0 and δ ∈ (0, 1) if, for all
O ⊂ Range(M) (where Range(M) is the range of the
outputs of the randomized algorithmM) and for all neigh-
boring datasets X and X ′, we have that

P (M(X ) ∈ O) ≤ exp(ε) · P (M(X ′) ∈ O) + δ.

Note that the definition above is symmetric in terms of X
and X ′. The DP parameters ε, δ control the privacy-utility

3 We slightly abuse the notation and view the dataset X (Z) as
an n× d (n× r) matrix where each of the n rows corresponds to
an original (transformed) input.

trade-off : The smaller they are, the tighter the privacy guar-
antee is, at the expense of lower accuracy due to increased
amount of noise required to satisfy DP. The state-of-the-art
works on the application of DP in ML (Abadi et al., 2016;
Foulds et al., 2016; Papernot et al., 2017) use the values of
ε in the single-digit range, while the value of δ is usually set
to be smaller than 1/n (Dwork & Roth, 2014). Refer to the
work of Dwork & Roth (2014) for more details about DP.

Bayesian Optimization (BO). We consider the problem
of sequentially maximizing an unknown objective function
f : X → R, in which X ⊂ Rd denotes a domain of d-
dimensional inputs. We consider the domain to be discrete
for simplicity. In the classical setting of BO, in each it-
eration t = 1, . . . , T , an unobserved input xt ∈ X is se-
lected to query by maximizing an acquisition function (AF),
yielding a noisy output measurement yt , f(xt) + εGP ,
in which εGP ∼ N (0, σ2

n) is a zero-mean Gaussian noise
with noise variance σ2

n. The AF should be designed to al-
low us to approach the global maximum f(x∗) rapidly, in
which x∗ , argmaxx∈X f(x). This can be achieved by
minimizing a standard BO objective such as regret. The
notion of regret intuitively refers to a loss in reward re-
sulting from not knowing x∗ beforehand. Formally, the
instantaneous regret incurred in iteration t is defined as
rt , f(x∗) − f(xt). Cumulative regret is defined as the
sum of all instantaneous regrets, i.e., RT ,

∑T
t=1 rt, and

simple regret is defined as the minimum among all instan-
taneous regrets, i.e., ST , mint=1,...,T rt. It is often desir-
able for a BO algorithm to be asymptotically no-regret, i.e.,
limT→∞ ST ≤ limT→∞RT /T = 0, which implies that
convergence to the global maximum is guaranteed.

Gaussian Process (GP). In order to facilitate the design of
the AF to minimize the regret, we model our belief of the
unknown objective function f using a GP. Let f(x)x∈X de-
note a GP, that is, every finite subset of f(x)x∈X follows a
multivariate Gaussian distribution (Rasmussen & Williams,
2006). Then, the GP is fully specified by its prior mean
µx , E[f(x)] and covariance kxx′ , cov[f(x), f(x′)]
for all x, x′ ∈ X . We assume that kxx′ is defined by the
commonly-used isotropic4 squared exponential covariance
function kxx′ , σ2

y exp{−0.5‖x − x′‖2/l2}, in which σ2
y

is the signal variance controlling the intensity of output
measurements and l is the length-scale controlling the cor-
relation or “similarity” between output measurements. Fur-
thermore, without loss of generality, we assume µx = 0
and kxx′ ≤ 1 for all x, x′ ∈ X . Given a column vector
yt , [yi]

>
1,...,t of noisy output measurements for some set

4 The non-isotropic squared exponential covariance function for
x, x′ ∈ X is defined as kxx′ , σ2

y exp{(x− x′)>Γ−2(x− x′)},
in which Γ is a diagonal matrix with length-scale components
[l1, . . . , ld]. It can be easily transformed to an isotropic one by
preprocessing the inputs, i.e., dividing each dimension of inputs
x, x′ by the respective length-scale component.
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Xt , {x1, . . . , xt} of inputs after t iterations, the posterior
predictive distribution of f(x) at any input x is a Gaussian
distribution with the following posterior mean and variance:

µt+1(x) , KxXt
(KXtXt

+ σ2
nI)−1yt

σ2
t+1(x) , kxx −KxXt

(KXtXt
+ σ2

nI)−1KXtx,
(1)

in which KxXt
, (kxx′)x′∈Xt

is a row vector, KXtx ,
K>xXt

, and KXtXt
, (kx′x′′)x′,x′′∈Xt

.

Under the privacy-preserving transformation (Fig. 1), de-
note the image of the set Xt as Zt , {z1, . . . , zt}, and the
images of the original inputs x and x′ as z and z′ respec-
tively. Then, the covariance function kzz′ can be defined
similarly as kxx′ , and thus we can define an analogue of the
predictive distribution (1) for z and Zt (instead of x and
Xt), which we denote as µ̃t+1(z) and σ̃2

t+1(z). We assume
that the function f is sampled from a GP defined over the
original domain X with the covariance function kxx′ and
with known hyperparameters (σ2

y and l), and we use the
same hyperparameters for the covariance function kzz′ .

The GP-UCB Algorithm. The AF adopted by the GP-
UCB algorithm (Srinivas et al., 2010) is the upper con-
fidence bound (UCB) of f induced by the posterior GP
model. In each iteration t, an input xt ∈ X is selected
to query by trading off between (a) sampling close to an
expected maximum (i.e., with large posterior mean µt(xt))
given the current GP belief (i.e., exploitation) vs. (b) sam-
pling an input with high predictive uncertainty (i.e., with
large posterior standard deviation σt(xt)) to improve the
GP belief of f over X (i.e., exploration). Specifically,
xt , argmaxx∈X µt(x) + β 1/2

t σt(x), in which the pa-
rameter βt > 0 is set to trade off between exploitation vs.
exploration. A remarkable property of the GP-UCB algo-
rithm shown by the work of Srinivas et al. (2010) is that it
achieves no regret asymptotically if the parameters βt > 0
are chosen properly.

A recent work by Kusner et al. (2015) proposed a DP vari-
ant of GP-UCB for hyperparameter tuning of ML models.
However, as mentioned in Section 1, this approach implies
that the modeler and curator are represented by the same
entity and thus both parties have full access to the sensitive
dataset and detailed knowledge of the BO algorithm. In our
outsourced setting, in contrast, the modeler only has access
to the transformed privatized dataset, while the curator is
unaware of the details of the BO algorithm, as described in
our motivating scenarios (Section 1).

3. Outsourced Bayesian Optimization
In our PO-GP-UCB algorithm, the curator needs to perform
a privacy-preserving transformation of the original dataset
X ⊂ Rd and release the transformed dataset Z ⊂ Rr to
the modeler. Subsequently, the modeler runs BO (i.e., GP-
UCB) using Z . When performing the transformation, the

goal of the curator is two-fold: Firstly, the transformation
has to be differentially private with given DP parameters ε, δ
(Definition 2); secondly, the transformation should allow the
modeler to obtain good BO performance on the transformed
dataset (in a sense to be formalized later in this section).

3.1. Transformation via Random Projection

Good BO performance by the modeler (i.e., the second goal
of the curator) can be achieved by making the GP predic-
tions (1) (on which the performance of the BO algorithm
depends) using the transformed dataset Z close to those
using the original dataset X . To this end, we ensure that
the distances between all pairs of inputs are approximately
preserved after the transformation. This is motivated by the
fact that the GP predictions (1) (hence the BO performance)
depend on the inputs only through the value of covariance,
which, in the case of isotropic covariance functions4, only
depends on the pairwise distances between inputs. Conse-
quently, by preserving the pairwise distances between inputs,
the performance of the BO (GP-UCB) algorithm run by the
modeler on Z is made similar to that of the non-private
GP-UCB algorithm run on the original dataset X , for which
theoretical convergence guarantee has been shown (Srinivas
et al., 2010). As a result, the BO performance in the out-
sourced setting can be theoretically guaranteed (Section 3.3)
and thus practically assured.

Therefore, to achieve both goals of the curator, we need to
address the question as to what transformation preserves
both the pairwise distances between inputs and DP. A nat-
ural approach is to add noise directly to the matrix of pair-
wise distances between the original inputs from X using
standard DP methods such as the Laplace or Gaussian mech-
anisms (Dwork & Roth, 2014). However, the resulting noisy
distance matrix is not guaranteed to produce an invertible
covariance matrix KXtXt + σ2

nI , which is a requirement
for the GP predictions (1). Instead, we perform the trans-
formation through a technique based on random projection,
which satisfies both goals of the curator. Firstly, random
projection through random samples from standard normal
distribution has been shown to preserve DP (Blocki et al.,
2012). Secondly, as a result of the Johnson-Lindenstrauss
lemma (Johnson & Lindenstrauss, 1984), random projection
is also able to approximately preserve the pairwise distances
between inputs, as shown in the following lemma:
Lemma 1. Let ν ∈ (0, 1/2), µ ∈ (0, 1), d ∈ N and a set
X ⊂ Rd of n row vectors be given. Let r ∈ N and M be a
d× r matrix whose entries are i.i.d. samples from N (0, 1).
If r ≥ 8 log(n2/µ)/ν2, the probability of

(1−ν)‖x−x′‖2 ≤ r−1‖xM−x′M‖2 ≤ (1+ν)‖x−x′‖2

for all x, x′ ∈ X is at least 1− µ.
Remark 1. r controls the dimension of the random projec-
tion, while ν and µ control the accuracy. Lemma 1 corrob-
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orates the intuition that a smaller value of r leads to larger
values of ν and µ, i.e., lower random projection accuracy.

The proof (Appendix B.1) consists of a union bound applied
to the Johnson-Lindenstrauss lemma (Johnson & Linden-
strauss, 1984), which is a result from geometry stating that
a set of points in a high-dimensional space can be embed-
ded into a lower-dimensional space such that the pairwise
distances between the points are nearly preserved.

3.2. The Curator Part
The curator part (Algorithm 1) of our PO-GP-UCB algo-
rithm takes as input the original datasetX viewed as an n×d
matrix3, the DP parameters ε, δ (Definition 2) and the ran-
dom projection parameter r (Lemma 1)5. To begin with, the
curator subtracts the mean from each column of X (line 2),
and then picks a matrix M of samples from standard normal
distribution N (0, 1) to perform random projection (line 3).
Next, if the smallest singular value σmin(X ) of the centered
dataset X is not less than a threshold ω (calculated in line 5),
the curator outputs the random projection Z , r−1/2XM
of the centered dataset X (line 7). Otherwise, the curator
increases the singular values of the centered dataset X (line
9) to obtain a new dataset X̃ and outputs the random projec-
tion Z , r−1/2X̃M of the new dataset X̃ (line 10). Lastly,
the curator releases Z to the modeler (line 11).

Algorithm 1 PO-GP-UCB (The curator part)
1: Input: X , ε, δ, r
2: X ← X − 11>X/n where 1 is a n× 1 vector of 1’s
3: Pick a d× r matrix M of i.i.d. samples from N (0, 1)
4: Compute the SVD of X = UΣV >

5: ω ← 16
√
r log(2/δ)ε−1 log(16r/δ)

6: if σmin(X ) ≥ ω then
7: return Z ← r−1/2XM
8: else
9: X̃ ← U

√
Σ2 + ω2In×dV

> where Σ2 (In×d) is an
n× d matrix whose main diagonal has squared sin-
gular values of X (ones) in each coordinate and all
other coordinates are 0

10: return Z ← r−1/2X̃M
11: end if
12: Release dataset Z to the modeler

The fact that Algorithm 1 both preserves DP and approxi-
mately preserves the pairwise distances between inputs is
stated in Theorems 1 and 2 below.

Theorem 1. Algorithm 1 preserves (ε, δ)-DP.

In the proof of Theorem 1 (Appendix B.2), all singular

5 Note that in Theorem 3, the parameter r is calculated based
on specific values of the parameters µ and ν (Lemma 1) in order
to achieve the performance guarantee. However, in practice, µ and
ν are not required to specify the value of r for Algorithm 1.

values of the dataset X are required to be not less than ω
(calculated in line 5). This explains the necessity of line 9,
where we increase the singular values of the dataset X if
σmin(X ) < ω, to ensure that this requirement is satisfied.

Theorem 2. Let a dataset X ⊂ Rd be given. Let ν ∈
(0, 1/2), µ ∈ (0, 1) be given. Let r ∈ N, such that r ≥
8 log(n2/µ)/ν2. Then, the probability of

(1− ν)‖x− x′‖2 ≤ ‖z − z′‖2 ≤ (1 + ν)C ′‖x− x′‖2

for all x, x′ ∈ X and their images z, z′ ∈ Z is at least
1− µ, in which C ′ , 1 + 1σmin(X )<ωω

2/σ2
min(X ).

The proof (Appendix B.3) consists of bounding the change
in distances between inputs due to the increase of the sin-
gular values of the dataset X (line 9 of Algorithm 1) and
applying Lemma 1. It can be observed from Theorem 2 that
when σmin(X ) ≥ ω, C ′ = 1, hence Algorithm 1 approxi-
mately preserves the pairwise distances between inputs.

There are several important differences between our Al-
gorithm 1 and the work of Blocki et al. (2012). Firstly,
Algorithm 3 of Blocki et al. (2012) releases a DP estimate
of the dataset covariance matrix, while our Algorithm 1
outputs a DP transformation of the original dataset. Sec-
ondly, Algorithm 3 of Blocki et al. (2012) does not have
the “if/else” condition (line 6 of Algorithm 1) and always
increases the singular values as in line 9 of Algorithm 1. In
our case, however, if the singular values are increased due
to the condition σmin(X ) < ω (i.e., the “else” clause, line 8
of Algorithm 1), the pairwise input distances of the dataset
X are no longer approximately preserved in Z (Theorem 2),
which results in a slightly different regret bound (see Theo-
rem 3 and Remark 2 below). This requires us to introduce
the “if/else” condition in Algorithm 1. We discuss these
changes in greater detail in Appendix B.2.

3.3. The Modeler Part

The modeler part of our PO-GP-UCB algorithm (Algo-
rithm 2) takes as input the transformed dataset Z ⊂ Rr
received from the curator as well as the GP-UCB parameter
δ′, and runs the GP-UCB algorithm for T iterations on Z .
In each iteration t, the modeler selects the candidate trans-
formed input zt by maximizing the GP-UCB AF (line 4),
and queries the curator for the corresponding noisy output
measurement yt (line 5). To perform such a query, the mod-
eler can send the index (row) it of the selected transformed
input zt in the dataset Z viewed as a matrix3 to the curator.
The curator can then find the preimage xt of zt by looking
into the same row it of the dataset X viewed as a matrix3.
After identifying xt, the curator can compute f(xt) to yield
a noisy output measurement yt , f(xt) + εGP and send it
to the modeler. The modeler then updates the GP posterior
belief (line 6) and proceeds to the next iteration t+ 1.
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In our theoretical analysis, we make the assumption of the
diagonal dominance property of the covariance matrices,
which was used by previous works on GP with DP (Smith
et al., 2018) and active learning (Hoang et al., 2014b):

Definition 3. Let a dataset X ⊂ Rd and a set X0 ⊆ X be
given. The covariance matrix KX0X0 is said to be diago-
nally dominant if for any x ∈ X0

kxx ≥
(√
|X0| − 1 + 1

)∑
x′∈X0\x

kxx′ .

Note that this assumption is adopted mainly for the theoreti-
cal analysis, and is thus not strictly required in order for our
algorithm to deliver competitive practical performance (Sec-
tion 4). Theorem 3 below presents the theoretical guarantee
on the BO performance of our PO-GP-UCB algorithm run
by the modeler (Algorithm 2).

Algorithm 2 PO-GP-UCB (The modeler part)
1: Input: Z , δ′, T
2: for t = 1, . . . , T do
3: Set βt ← 2 log(nt2π2/6δ′)

4: zt ← argmaxz∈Z µ̃t(z) + β
1/2
t σ̃t(z)

5: Query the curator for yt
6: Update GP posterior belief: µ̃t+1(z) and σ̃t+1(z)
7: end for

Theorem 3. Let εucb > 0, δucb ∈ (0, 1), T ∈ N, DP
parameters ε and δ, and a dataset X ⊂ Rd be given. Let
d , diam(X )/l where diam(X ) is the diameter of X and
l is the GP length-scale. Suppose for all t = 1, . . . , T ,
|yt| ≤ L and KXt−1Xt−1

is diagonally dominant. Suppose
r ≥ 8 log(n2/µ)/ν2 (Algorithm 1) where µ , δucb/2 and
ν , min(εucb/(2

√
3d2L), 2/d2, 1/2), and δ′ , δucb/2

(Algorithm 2). If σmin(X ) ≥ ω, then the simple regret ST
incurred by Algorithm 2 run by the modeler satisfies

ST ≤
(
ε2ucb + 24(C2 + C1β

1/2
T )2 log T/T

+24/ log(1 + σ−2n ) · βT γT /T
)1/2

with probability at least 1 − δucb, in which γT is the
maximum information gain6 on the function f from any
set of noisy output measurements of size T , C1 ,

O
(
σy
√
σ2
y + σ2

n(σ2
y/σ

2
n + 1)

)
and C2 , O(σ2

y/σ
2
n · L).

The key idea of the proof (Appendix B.5) is to ensure that ev-
ery value of the GP-UCB AF computed on the transformed
dataset Z is close to the value of the corresponding GP-
UCB AF computed on the original dataset X . Consequently,
the regret of the PO-GP-UCB algorithm run on Z can be
analyzed using similar techniques as those adopted in the

6Srinivas et al. (2010) has shown that γT = O((log T )d+1)
for the squared exponential kernel.

analysis of the non-private GP-UCB algorithm run on the
original dataset X (Srinivas et al., 2010), which leads to the
regret bound shown in Theorem 3.
Remark 2. If σmin(X ) < ω, a similar upper bound on the
regret can be proved with the difference that εucb specified
by the curator is replaced by a different constant, which,
unlike εucb, cannot be set arbitrarily. This results from
the fact that if σmin(X ) < ω, Algorithm 1 increases the
singular values of the dataset X (see line 9). As a conse-
quence, the pairwise distances between inputs are no longer
approximately preserved after the transformation (see Theo-
rem 2), resulting in a looser regret bound (see Remark 6 in
Appendix B.5).
Remark 3. The presence of the constant εucb makes the re-
gret upper bound of PO-GP-UCB slightly different from that
of the original GP-UCB algorithm. εucb can be viewed as
controlling the trade-off between utility (BO performance)
and privacy preservation (see more detailed discussion in
Section 3.4). In contrast, the only prior works on privacy-
preserving BO by Kusner et al. (2015) and Nguyen et al.
(2018) do not provide any regret bounds.
Remark 4. The upper bound on the simple regret ST in
Theorem 3 indirectly depends on the DP parameter ε: the
bound holds when σmin(X ) ≥ ω, in which ω depends on
ε (line 5 of Algorithm 1). Moreover, when σmin(X ) < ω,
εucb (which appears in the regret bound) is replaced by a
different constant, which depends on ε (see Remark 2).

3.4. Analysis and Discussion

Interestingly, our theoretical results are amenable to elegant
interpretations regarding the privacy-utility trade-off.

The flexibility to tune the value of ω to satisfy the condition
required by Theorem 3 (i.e., σmin(X ) ≥ ω) incurs an in-
teresting trade-off. Specifically, if σmin(X ) < ω, we can
either (a) run PO-GP-UCB without modifying any param-
eter, or (b) reduce ω by tuning the algorithmic parameters
to satisfy the condition σmin(X ) ≥ ω, both of which incur
some costs. In case (a), the resulting regret bound is looser
as explained in Remark 2, which might imply worse BO
performance. In case (b), to reduce the value of ω, we can
either (i) increase the DP parameters ε and δ which deteri-
orates the DP guarantee, or (ii) decrease the value of r. A
smaller value of r implies larger values of µ and ν as re-
quired by Theorem 3 (r ≥ 8 log(n2/µ)/ν2) and thus larger
values of εucb and δucb as seen in the definitions of µ and ν
in Theorem 3. This consequently results in a worse regret
upper bound (Theorem 3) and thus deteriorated BO perfor-
mance. Therefore, the privacy-utility trade-off is involved in
our strategy to deal with the scenario where σmin(X ) < ω.

For a fixed value of ω such that σmin(X ) ≥ ω, the privacy-
utility trade-off can also be identified and thus utilized to
adjust the the algorithmic parameters: ε, δ, εucb and δucb.
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(a) (b) (c)

Figure 2. Simple regrets achieved by tested BO algorithms (with fixed r and different values of ε) vs. the number of iterations for (a) the
synthetic GP dataset (r = 10), (b) loan applications dataset (r = 15), and (c) private property price dataset (r = 15).

Specifically, decreasing the values of the DP parameters ε
and δ improves the privacy guarantee. However, in order to
fix the value of ω (to ensure that the condition σmin(X ) ≥ ω
remains satisfied), the value of r needs to be reduced, which
results in larger values of εucb and δucb and thus worse BO
performance (as discussed in the previous paragraph). Sim-
ilar analysis reveals that decreasing the values of εucb and
δucb improves the BO performance, at the expense of looser
privacy guarantee (i.e., larger required values of ε and δ).
Furthermore, the role played by ω in Algorithm 1 provides a
guideline on the practical design of the algorithm. In partic-
ular, for a fixed desirable level of privacy (i.e., fixed values
of ε and δ), the value of r should be made as large as possi-
ble while still ensuring that the condition σmin(X ) ≥ ω is
satisfied, since larger r improves the BO performance until
this condition is violated. This guideline will be exploited
and validated in the experiments.

These insights regarding the privacy-utility trade-off serve
as intuitive justifications of our PO-GP-UCB algorithm and
provide useful guidelines for its practical deployment.

4. Experiments and Discussion
In this section, we empirically evaluate the performance of
our PO-GP-UCB algorithm using four datasets including a
synthetic GP dataset, a real-world loan applications dataset,
a real-world property price dataset and, in Appendix A,
the Branin-Hoo benchmark function. The performances
(simple regrets) of our algorithm are compared with that of
the non-private GP-UCB algorithm run using the original
datasets (Srinivas et al., 2010). The original output mea-
surements for both real-world datasets are log-transformed
to remove skewness and extremity in order to stabilize
the GP covariance structure. The GP hyperparameters are
learned using maximum likelihood estimation (Rasmussen
& Williams, 2006). All results are averaged over 50 random
runs, each of which uses a different set of initializations for
BO. Each random run uses an independent realization of
the matrix M of i.i.d. samples fromN (0, 1) for performing
random projection (line 3 of Algorithm 1). We set the GP-

UCB parameter δucb = 0.05 (Theorem 3) and normalize
the inputs to have a maximal norm of 25 in all experiments.
Following the guidelines by the state-of-the-art works in
DP (Dwork & Roth, 2014; Abadi et al., 2016; Foulds et al.,
2016; Papernot et al., 2017), we fix the value of the DP
parameter δ (Definition 2) to be smaller than 1/n in all ex-
periments. Note that setting the values of the parameters µ,
ν (Lemma 1) and the GP-UCB parameter εucb (Theorem 3),
as well as assuming the diagonal dominance of covariance
matrices (Definition 3), is required only for our theoretical
analysis and thus not necessary in the practical employment
of our algorithm.

In every experiment that varies the value of the DP param-
eter ε (Definition 2) (Fig. 2), the PO-GP-UCB algorithm
with the largest value of ε under consideration7 satisfies
the condition σmin(X ) ≥ ω (i.e., the “if” clause, line 6 of
Algorithm 1), while the algorithms with all other values of
ε under consideration satisfy the condition σmin(X ) < ω
(i.e., the “else” clause, line 8 of Algorithm 1).

Synthetic GP dataset. The original inputs for this experi-
ment are 2-dimensional vectors arranged into a uniform grid
and discretized into a 100× 100 input domain (i.e., d = 2
and n = 10000). The function to maximize is sampled
from a GP with the GP hyperparameters µx = 0, l = 1.25,
σ2
y = 1 and σ2

n = 10−5. We set the parameter r = 10
(Algorithm 1), DP parameter δ = 10−5 (Definition 2) and
the GP-UCB parameter T = 50 for this experiment.

Fig. 2a shows the performances of PO-GP-UCB with differ-
ent values of ε and that of non-private GP-UCB. It can be
observed that smaller values of ε (tighter privacy guarantees)
result in larger simple regret, which is consistent with the
privacy-utility trade off. PO-GP-UCB with the largest value
of ε = exp(1.1) satisfying the condition σmin(X ) ≥ ω
achieves only 0.011σy more simple regret than non-private
GP-UCB after 50 iterations. Interestingly, despite having

7Further increasing the value of εwill only decrease the value of
ω (see line 5 of Algorithm 1), so the condition σmin(X ) ≥ ω will
remain satisfied. As a result, the datasetZ returned by Algorithm 1
and hence the performance of PO-GP-UCB will stay the same.
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a looser regret bound (see Remark 2), the PO-GP-UCB
algorithm with some smaller values of ε satisfying the con-
dition σmin(X ) < ω also only incurs slightly larger re-
gret than non-private GP-UCB. In particular, PO-GP-UCB
with ε = exp(0.9) (ε = exp(0.0)) achieves only 0.069σy
(0.099σy) more simple regret after 50 iterations. Therefore,
our algorithm is able to achieve favorable performance with
the values of ε in the single-digit range, which is consistent
with the practice of the state-of-the-art works on the appli-
cation of DP in ML (Abadi et al., 2016; Foulds et al., 2016;
Papernot et al., 2017). This implies our algorithm’s prac-
tical capability of simultaneously achieving tight privacy
guarantee and obtaining competitive BO performance.

We also investigate the impact of varying the value of the
random projection parameter r on the performance of PO-
GP-UCB. In particular, we consider 3 different values of DP
parameter ε: ε = exp(1.1), ε = exp(1.3) and ε = exp(1.5).
We then fix the value of ε and vary the value of r. The largest
value of r satisfying the condition σmin(X ) ≥ ω is r = 10
for ε = exp(1.1), r = 15 for ε = exp(1.3) and r = 20
for ε = exp(1.5). Tables 1, 2 and 3 reveal that the largest
values of r satisfying the condition σmin(X ) ≥ ω lead to
the smallest simple regret after 50 iterations. Decreasing the
value of r increases the simple regret, which agrees with our
analysis in Section 3.4 (i.e., smaller r results in worse regret
upper bound). On the other hand, increasing r such that the
condition σmin(X ) < ω is satisfied also results in larger
simple regret, which is again consistent with the analysis
in Remark 2 stating that the regret upper bound becomes
looser in this scenario. This experiment suggests that, in
practice, for a fixed desirable privacy level (i.e., if the values
of the DP parameters ε and δ are fixed), r should be chosen
as the largest value satisfying the condition σmin(X ) ≥ ω.

Table 1. Simple regrets achieved by PO-GP-UCB with fixed ε =
exp(1.1) and different values of r after 50 iterations for the syn-
thetic GP dataset. The largest value of r satisfying the condition
σmin(X ) ≥ ω is r = 10.
r 3 6 8 10 15 20
S50 0.073 0.038 0.018 0.014 0.118 0.137

Table 2. Simple regrets achieved by PO-GP-UCB with fixed ε =
exp(1.3) and different values of r after 50 iterations for the syn-
thetic GP dataset. The largest value of r satisfying the condition
σmin(X ) ≥ ω is r = 15.
r 3 9 12 15 20 30
S50 0.091 0.009 0.019 0.008 0.127 0.134

Real-world loan applications dataset. A bank is selecting
the loan applicants with the highest return on investment
(ROI) and outsources the task to a financial AI consultancy.
The inputs to BO are the data of 36000 loan applicants (we
use the public data from https://www.lendingclub.com/),

Table 3. Simple regrets achieved by PO-GP-UCB with fixed ε =
exp(1.5) and different values of r after 50 iterations for the syn-
thetic GP dataset. The largest value of r satisfying the condition
σmin(X ) ≥ ω is r = 20.
r 5 10 15 20 30 50
S50 0.05 0.021 0.003 0.002 0.094 0.142

each consisting of three features: the total amount commit-
ted by investors for the loan, the interest rate on the loan
and the annual income of the applicant (i.e., n = 36000 and
d = 3). The function to maximize (the output measurement)
is the ROI for an applicant. The original inputs are prepro-
cessed to form an isotropic covariance function4. We set
r = 15, δ = 10−5 and T = 50.

Fig. 2b presents the results of varying the value of ε. Similar
to the synthetic GP dataset, after 50 iterations, the sim-
ple regret achieved by PO-GP-UCB with the largest value
of ε = exp(2.9) satisfying the condition σmin(X ) ≥ ω
is slightly larger (by 0.003σy) than that achieved by non-
private GP-UCB. Moreover, PO-GP-UCB with some val-
ues of ε in the single-digit range satisfying the condition
σmin(X ) < ω shows marginally worse performance com-
pared with non-private GP-UCB. In particular, after 50 it-
erations, ε = exp(2.0) and ε = exp(1.0) result in 0.019σy
and 0.05σy more simple regret than non-private GP-UCB
respectively.

We examine the effect of r on the performance of PO-GP-
UCB, by fixing the value of DP parameter ε and chang-
ing r. We consider 3 different values of DP parameter ε:
ε = exp(2.7), ε = exp(2.9) and ε = exp(3.1). The largest
value of r satisfying the condition σmin(X ) ≥ ω is r = 10
for ε = exp(2.7), r = 15 for ε = exp(2.9) and r = 20 for
ε = exp(3.1). The results are presented in Tables 4, 5 and
6. PO-GP-UCB with the largest r satisfying the condition
σmin(X ) ≥ ω in general leads to the best performance,
i.e., it achieves the smallest simple regret in Tables 4 and
5, and the second smallest simple regret in Table 6. Sim-
ilar insights to the results of the synthetic GP dataset can
also be drawn: reducing the value of r and increasing the
value of r to satisfy the condition σmin(X ) < ω both re-
sult in larger simple regret, which again corroborates our
theoretical analysis.

Table 4. Simple regrets achieved by PO-GP-UCB with fixed ε =
exp(2.7) and different values of r after 50 iterations for the real-
world loan applications dataset. The largest value of r satisfying
the condition σmin(X ) ≥ ω is r = 10.
r 3 6 8 10 15 20
S50 0.083 0.088 0.078 0.069 0.081 0.076

Real-world private property price dataset. A real estate
agency is trying to locate the cheapest private properties
and outsources the task of selecting the candidate prop-
erties to an AI consultancy. The original inputs are the

https://www.lendingclub.com/
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Table 5. Simple regrets achieved by PO-GP-UCB with fixed ε =
exp(2.9) and different values of r after 50 iterations for the real-
world loan applications dataset. The largest value of r satisfying
the condition σmin(X ) ≥ ω is r = 15.
r 3 9 12 15 20 30
S50 0.091 0.076 0.078 0.077 0.1 0.096

Table 6. Simple regrets achieved by PO-GP-UCB with fixed ε =
exp(3.1) and different values of r after 50 iterations for the real-
world loan applications dataset. The largest value of r satisfying
the condition σmin(X ) ≥ ω is r = 20.
r 5 10 15 20 30 50
S50 0.097 0.091 0.069 0.084 0.104 0.127

longitude/latitude coordinates of 2004 individual proper-
ties (i.e., n = 2004 and d = 2). We use the public data
from https://www.ura.gov.sg/realEstateIIWeb/transaction/
search.action. The function to minimize is the evaluated
property price measured in dollars per square meter. We set
r = 15, δ = 10−4 and T = 100.

The results of this experiment for different values of ε are
displayed in Fig. 2c. Similar observations can be made that
are consistent with the previous experiments. In particular,
smaller values of ε (tighter privacy guarantees) generally
lead to worse BO performance (larger simple regret); PO-
GP-UCB with the largest value of ε = exp(2.8) satisfying
the condition σmin(X ) ≥ ω incurs slightly larger simple
regret (0.051σy) than non-private GP-UCB after 100 itera-
tions; PO-GP-UCB with some values of ε in the single-digit
range satisfying the condition σmin(X ) < ω exhibits small
disadvantages compared with non-private GP-UCB after
100 iterations in terms of simple regrets: ε = exp(1.0) and
ε = exp(0.5) result in 0.017σy and 0.082σy more simple
regret respectively.

We again empirically inspect the impact of r on the per-
formance of PO-GP-UCB in the same manner as the previ-
ous experiments: we fix the value of ε and vary the value
of r. We consider 3 different values of DP parameter ε:
ε = exp(2.6), ε = exp(2.8) and ε = exp(3.0). The largest
value of r satisfying the condition σmin(X ) ≥ ω is r = 10
for ε = exp(2.6), r = 15 for ε = exp(2.8) and r = 20 for
ε = exp(3.0). Tables 7, 8 and 9 show that the smallest
simple regret is achieved by the largest values of r satisfy-
ing the condition σmin(X ) ≥ ω. Similar to the previous
experiments, smaller values of r and larger values of r that
satisfy the condition σmin(X ) < ω both lead to larger sim-
ple regret, further validating the practicality of our guideline
on the selection of r (Section 3.4).

5. Conclusion and Future Work
This paper describes PO-GP-UCB, which is the first al-
gorithm for BO with DP in the outsourced setting with

Table 7. Simple regrets achieved by PO-GP-UCB with fixed ε =
exp(2.6) and different values of r after 100 iterations for the real-
world property price dataset. The largest value of r satisfying the
condition σmin(X ) ≥ ω is r = 10.
r 3 6 8 10 15 20

S100 0.682 0.516 0.495 0.485 0.485 0.493

Table 8. Simple regrets achieved by PO-GP-UCB with fixed ε =
exp(2.8) and different values of r after 100 iterations for the real-
world property price dataset. The largest value of r satisfying the
condition σmin(X ) ≥ ω is r = 15.
r 3 9 12 15 20 30

S100 0.567 0.553 0.479 0.453 0.493 0.52

Table 9. Simple regrets achieved by PO-GP-UCB with fixed ε =
exp(3.0) and different values of r after 100 iterations for the real-
world property price dataset. The largest value of r satisfying the
condition σmin(X ) ≥ ω is r = 20.
r 5 10 15 20 30 50

S100 0.591 0.523 0.486 0.482 0.489 0.488

theoretical performance guarantee. We prove the privacy-
preserving property of our algorithm and show a theoretical
upper bound on the regret. We use both synthetic and real-
world experiments to show the empirical effectiveness of
our algorithm, as well as its ability to achieve state-of-the-
art privacy guarantees (in the single-digit range) and handle
the privacy-utility trade-off. For future work, it would be
interesting to investigate whether PO-GP-UCB can be ex-
tended for privately releasing the output measurements yt.
To this end, the work of Hall et al. (2013) which provides
a way for DP release of functional data can potentially be
applied. Another direction would be to investigate whether
the work of Kenthapadi et al. (2013) on DP random pro-
jection can be used as a privacy-preserving mechanism in
our outsourced BO framework to improve the privacy guar-
antee. We will consider generalizing PO-GP-UCB to non-
myopic BO (Kharkovskii et al., 2020; Ling et al., 2016),
batch BO (Daxberger & Low, 2017), high-dimensional
BO (Hoang et al., 2018), and multi-fidelity BO (Zhang et al.,
2017; 2019) settings and incorporating early stopping (Dai
et al., 2019) and recursive reasoning (Dai et al., 2020). We
will also consider our outsourced setting in the active learn-
ing context (Cao et al., 2013; Hoang et al., 2014a;b; Low
et al., 2008; 2009; 2011; 2012; 2014a; Ouyang et al., 2014;
Zhang et al., 2016). For applications with a huge budget
of function evaluations, we like to couple PO-GP-UCB
with the use of distributed/decentralized (Chen et al., 2012;
2013a;b; 2015; Hoang et al., 2016; 2019b;a; Low et al.,
2015; Ouyang & Low, 2018) or online/stochastic (Hoang
et al., 2015; 2017; Low et al., 2014b; Xu et al., 2014; Teng
et al., 2020; Yu et al., 2019a;b) sparse GP models to repre-
sent the belief of the unknown objective function efficiently.

https://www.ura.gov.sg/realEstateIIWeb/transaction/search.action
https://www.ura.gov.sg/realEstateIIWeb/transaction/search.action
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A. Additional experimental results on Branin-Hoo function
In this section, we empirically evaluate the performance of our PO-GP-UCB algorithm using the dataset sampled from
Branin-Hoo benchmark function8. The original inputs for this experiment are 2-dimensional vectors arranged into a uniform
grid and discretized into a 31 × 31 input domain (i.e., d = 2 and n = 961). The function to maximize is sampled from
the negation of Branin-Hoo function. The original output measurements are log-transformed to remove skewness and
extremity in order to stabilize the GP covariance structure. The GP hyperparameters are learned using maximum likelihood
estimation (Rasmussen & Williams, 2006). Similarly to the real-world loan applications dataset in Section 4, the original
inputs are preprocessed to form an isotropic covariance function4. All results are averaged over 50 random runs, each of
which uses a different set of initializations for BO. We set the GP-UCB parameter δucb = 0.05 (Theorem 3) and normalize
the inputs to have a maximal norm of 25. We set the parameter r = 10 (Algorithm 1), DP parameter δ = 10−3 (Definition 2)
and the GP-UCB parameter T = 50 for this experiment.

Fig. 3 shows the performances of PO-GP-UCB with different values of ε and that of non-private GP-UCB. The results are
consistent with the previous experiments. Smaller values of ε (tighter privacy guarantees) generally lead to larger simple
regret; PO-GP-UCB with the largest value of ε = exp(2.3) satisfying the condition σmin(X ) ≥ ω incurs only 0.004σy
more simple regret than non-private GP-UCB after 50 iterations; PO-GP-UCB with some values of ε in the single-digit
range satisfying the condition σmin(X ) < ω exhibits small difference in simple regret compared with non-private GP-UCB
after 50 iterations: ε = exp(2.0) and ε = exp(1.8) result in 0.023σy and 0.051σy more simple regret respectively.
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Figure 3. Simple regrets achieved by tested BO algorithms (with fixed r = 10 and different values of ε) vs. the number of iterations for
the Branin-Hoo function dataset.

Similarly to the experiments in the main text, we investigate the impact of varying the value of the random projection
parameter r on the performance of PO-GP-UCB. We consider 3 different values of DP parameter ε: ε = exp(2.3),
ε = exp(2.5) and ε = exp(2.7). We fix the value of ε and vary the value of r. The largest value of r satisfying the condition
σmin(X ) ≥ ω is r = 10 for ε = exp(2.3), r = 15 for ε = exp(2.5) and r = 20 for ε = exp(2.7). Tables 10, 11 and 12
reveal that the largest values of r satisfying the condition σmin(X ) ≥ ω lead to the smallest simple regret after 50 iterations.
Decreasing the value of r increases the simple regret, which agrees with our analysis in Section 3.4 (i.e., smaller r results in
worse regret upper bound). Increasing r such that the condition σmin(X ) < ω is satisfied, on the other hand, also results in
larger simple regret, which is again consistent with the analysis in Remark 2 stating that the regret upper bound becomes
looser in this scenario. These observations are consisted with those for a synthetic GP dataset, a real-world loan applications
dataset and a real-world property price dataset in the main text.

Table 10. Simple regrets achieved by PO-GP-UCB with fixed ε = exp(2.3) and different values of r after 50 iterations for the Branin-Hoo
function dataset. The largest value of r satisfying the condition σmin(X ) ≥ ω is r = 10.

r 3 6 8 10 15 20
S50 0.53 0.184 0.038 0.0 0.005 0.024

8https://www.sfu.ca/∼ssurjano/branin.html.

https://www.sfu.ca/~ssurjano/branin.html
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Table 11. Simple regrets achieved by PO-GP-UCB with fixed ε = exp(2.5) and different values of r after 50 iterations for the Branin-Hoo
function dataset. The largest value of r satisfying the condition σmin(X ) ≥ ω is r = 15.

r 3 9 12 15 20 30
S50 0.259 0.001 0.0 0.0 0.014 0.026

Table 12. Simple regrets achieved by PO-GP-UCB with fixed ε = exp(2.7) and different values of r after 50 iterations for the Branin-Hoo
function dataset. The largest value of r satisfying the condition σmin(X ) ≥ ω is r = 20.

r 5 10 15 20 30 50
S50 0.152 0.0 0.0 0.0 0.005 0.073

B. Proofs and derivations
B.1. Proof of Lemma 1

Theorem 4. [Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss, 1984)] Let ν ∈ (0, 1/2), r ∈ N and d ∈ N be
given. Let M ′ be a r × d matrix whose entries are i.i.d. samples from N (0, 1). Then for any vector y ∈ Rd

P
(

(1− ν)‖y‖2 ≤ r−1‖M ′y‖2 ≤ (1 + ν)‖y‖2
)
≥ 1− 2 exp(−ν2r/8).

Proof of lemma. Fix x, x′ ∈ X . It follows from Theorem 4 by setting vector y = (x− x′)> and r × d matrix M ′ = M>

that
1− 2 exp(−ν2r/8)

≤ P
(

(1− ν)‖(x− x′)>‖2 ≤ r−1‖M>(x− x′)>‖2 ≤ (1 + ν)‖(x− x′)>‖2
)

= P
(

(1− ν)‖x− x′‖2 ≤ r−1‖xM − x′M‖2 ≤ (1 + ν)‖x− x′‖2
)
.

(2)

Since there are no more than n2/2 pairs of inputs x, x′ ∈ X , applying the union bound to (2) gives that the probability of

(1− ν)‖x− x′‖2 ≤ r−1‖xM − x′M‖2 ≤ (1 + ν)‖x− x′‖2

for all x, x′ ∈ X is at least 1− n2 exp(−ν2r/8).

To guarantee that the probability of (1 − ν)‖x − x′‖2 ≤ r−1‖Mx −Mx′‖2 ≤ (1 + ν)‖x − x′‖2 for all x, x′ ∈ X is at
least 1− µ, the value of r has to satisfy the following inequality:

1− n2 exp(−ν2r/8) ≥ 1− µ,

which is equivalent to r ≥ 8 log(n2/µ)/ν2.

B.2. Privacy guarantee of Algorithm 1

B.2.1. COMPARISON BETWEEN ALGORITHM 1 AND ALGORITHM 3 OF BLOCKI ET AL. (2012)

There are several important differences between our Algorithm 1 and the work of Blocki et al. (2012). Firstly, Algorithm 3
of Blocki et al. (2012) outputs a DP estimate r−1X̃>M>M X̃ (in the notations of Algorithm 1) of the covariance matrix
r−1X>X , while our Algorithm 1 outputs a DP transformation r−1/2XM (or r−1/2X̃M ) of the original datasetX . However,
the authors of Blocki et al. (2012) prove the privacy guarantee (see Theorem 4.1, p. 13 of their paper) by showing that
releasing X̃>M> (using matrix M of size r × n) preserves DP and then apply the post-processing property of DP to
reconstruct r−1X̃>M>M X̃ . This observation allows us to modify their proof for our Algorithm 1. Additionally, matrix
X̃>M> (in the notations of Algorithm 1) in the proof of Blocki et al. (2012) has size d × r, while matrices r−1/2XM
and r−1/2X̃M returned by our Algorithm 1 have size n× r, which requires us to modify the proof of Blocki et al. (2012).
These modifications are discussed in Section B.2.2 below.

Secondly, Algorithm 3 of Blocki et al. (2012) does not have the “if/else” condition (line 6 of Algorithm 1) and always
increases the singular values as in line 9 of Algorithm 1, since the authors are able to offset the bias introduced to the
estimate of covariance of the dataset along a given dimension by increasing the singular values. Specifically, they do it by
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subtracting ω2 from the computed estimate (see Algorithm 4 in Blocki et al. (2012)). For our case, however, the distances
between the original inputs from the dataset X are no longer approximately the same as the distances between their images
from the dataset Z when σmin(X ) < ω (i.e., the “else” clause, line 8 of Algorithm 1), as shown in Theorem 2. Therefore,
the case of σmin(X ) < ω results in a slightly different regret bound (see Theorem 3 and Remark 2) and requires us to
introduce the “if/else” condition into Algorithm 1. Introducing such an “if/else” condition, however, does not affect the proof
of Theorem 4.1 of Blocki et al. (2012) and our proof: the “if” clause (line 6 of Algorithm 1) is stated in the Corollary (see p.
17 of Blocki et al. (2012)), while the “else” clause (line 8 of Algorithm 1) is proved in Theorem 4.1 of Blocki et al. (2012).

B.2.2. PROOF OF THEOREM 1

Fix two neighboring datasets X and X ′. Let E , X ′ −X , such that E is a rank 1 matrix. Without loss of generality, we
assume that in the definition of neighboring datasets (Definition 1) ‖x(i∗) − x′(i∗)‖ = 1. Then we can write E as the outer
product E = ei∗v

> where ei∗ is the indicator vector of row i∗ and v is the vector of norm 1. Then the singular values of E
are exactly {1, 0, . . . , 0} (see Blocki et al. (2012), p. 14).

Similar to Theorem 4.1 of Blocki et al. (2012), the proof is composed of two stages. For the first stage we work under the
premise that both and X and X ′ have singular values no less than ω (the “if” clause, line 6 of Algorithm 1). For the second
stage we denote X̃ and X̃ ′ as the respective matrices from “else” clause (line 8 of Algorithm 1) and show what adaptations
are needed to make the proof follow through.

We prove the theorem for the scaled output of the “if” clause of Algorithm 1 XM (the post-processing property of DP can
be applied after that to reconstruct r−1/2XM ). XM is composed of r columns each is an i.i.d. sample from XY where
Y ∼ N (0, Id×d). The following lemma is similar to Claim 4.3 of Blocki et al. (2012)(p. 14):

Lemma 2. Let ε > 0, δ ∈ (0, 1), r ∈ N, d ∈ N, two neighboring datasets X and X ′ and Y sampled from N (0, Id×d) be
given. Fix ε0 , ε/

√
4r log(2/δ) and δ0 , δ/(2r). Denote

S , {ξ ∈ Rn : exp(−ε0)PDFX ′Y (ξ) ≤ PDFXY (ξ) ≤ exp(ε0)PDFX ′Y (ξ)}

where PDF is the probability density function. Then P (S) ≥ 1− δ0.

Proof. Similar to the proof of Claim 4.3 of Blocki et al. (2012), first we formally define the PDF of the two distributions.
We apply the fact that XY and X ′Y are linear transformations of N (0, Id×d).

PDFXY (ξ) =
1√

(2π)n det(XX>)
exp

(
− 1

2
ξ>(XX>)−1ξ

)
PDFX ′Y (ξ) =

1√
(2π)n det(X ′X ′>)

exp
(
− 1

2
ξ>(X ′X ′>)−1ξ

)
.

If the matrix XX> (all the reasoning here is exactly the same for X ′X ′>) is not full-rank, the SVD allows us to use
similar notation to denote the generalizations of the inverse and of the determinant: The Moore-Penrose inverse of
any square matrix M is M† , V Σ−1U> where M = UΣV > is the SVD of matrix M , and the pseudo-determinant
of M is d̃et(M) , Π

rank(M)
i=1 σi(M) where σi(M) are the singular values of matrix M . Furthermore, if XX> has

non-trivial kernel space (i.e., is not invertible) then PDFXY in the equation above is technically undefined. However,
if we restrict ourselves only to the subspace V = (Ker(XX>))⊥, then PDFVXY is defined over V and PDFVXY (ξ) ,

1√
(2π)rank(XX>)d̃et(XX>)

exp
(
− 1

2ξ
>(XX>)†ξ

)
From now on, we omit the superscript from the PDF and refer to the above function as the PDF of XY . See p. 4–5 of Blocki
et al. (2012) for more details.

Similar to the proof of Claim 4.3 of Blocki et al. (2012), first we show that

exp(−ε0/2) ≤
√

det(X ′X ′>)

det(XX>)
≤ exp(ε0/2).

The proof copies the derivation of eq. 4 in Blocki et al. (2012) (p. 15) with replacing A to X>, A′ to X ′>, x to ξ and
swapping n and d where necessary.
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Next we prove an analogue of eq. 5 of Claim 4.3 of Blocki et al. (2012):

Pξ

(
1

2
|ξ>
(
(XX>)−1 − (X ′X ′>)−1

)
ξ| ≥ ε0/2

)
≤ δ0. (3)

To do this:

ξ>
(
(XX>)−1 − (X ′X ′>)−1

)
ξ

= ξ>
(
(XX>)−1 − (X ′X ′>)−1XX>(XX>)−1

)
ξ

= ξ>
(
(XX>)−1 − (X ′X ′>)−1(X ′ − E)(X ′ − E)>(XX>)−1

)
ξ

= ξ>
(
(XX>)−1 − (X ′X ′>)−1(X ′X ′> − EX ′> −X ′E> + EE>)(XX>)−1

)
ξ

= ξ>
(
(XX>)−1 − (XX>)−1 − (X ′X ′>)−1(−EX ′> −X ′E> + EE>)(XX>)−1

)
ξ

= ξ>(X ′X ′>)−1(EX ′> + X ′E> − EE>)(XX>)−1ξ

= ξ>(X ′X ′>)−1(EX> + X ′E>)(XX>)−1ξ

(4)

where the second and the last equalities are due to E = X ′ −X . The expression in the last line of (4) is very similar to the
one in the derivation of eq. 5 in Blocki et al. (2012) (p. 15). The difference is that in order for the proof to go through, we
need to multiply (X ′X ′>)−1 by XX>(XX>)−1 in the second line of (4), while the original proof of Blocki et al. (2012)
multiplies (X>X )−1 by X ′>X ′(X ′>X ′)−1 (in our notations), see eq. in the bottom of p. 15 of Blocki et al. (2012).

Now denoting singular value decompositions of X = UΣV > and X ′ = U ′ΛV ′>, and the fact that E = ei∗v
>, we

continue (4):
ξ>(X ′X ′>)−1(EX> + X ′E>)(XX>)−1ξ

= ξ>(X ′X ′>)−1EX>(XX>)−1ξ + ξ>(X ′X ′>)−1X ′E>(XX>)−1ξ

= ξ>(U ′ΛV ′>V ′ΛU ′>)−1(ei∗ · v>V ΣU>)(UΣV >V ΣU>)−1ξ

+ξ>(U ′ΛV ′>V ′ΛU ′>)−1(U ′ΛV ′>v · e>i∗)(UΣV >V ΣU>)−1ξ

= ξ>U ′Λ−2U ′>ei∗ · v>V Σ−1U>ξ + ξ>U ′Λ−1V ′>v · e>i∗UΣ−2U>ξ

(5)

where the last equality is due to the properties of singular value decomposition.

So now, assume ξ is sampled from X ′Y (the case of XY is symmetric). That is, assume that we’ve sampled χ from
Y ∼ N (0, Id×d) and we have ξ = X ′χ = U ′ΛV ′>χ and equivalently ξ = (X +E)χ = UΣV >χ+ ei∗v

>χ. Plugging it
into (5) gives:

|ξ>U ′Λ−2U ′>ei∗ · v>V Σ−1U>ξ + ξ>U ′Λ−1V ′>v · e>i∗UΣ−2U>ξ|
= |(U ′ΛV ′>χ)>U ′Λ−2U ′>ei∗ · v>V Σ−1U>(UΣV >χ+ ei∗v

>χ)

+(U ′ΛV ′>χ)>U ′Λ−1V ′>v · e>i∗UΣ−2U>(UΣV >χ+ ei∗v
>χ)|

= |χ>V ′ΛU ′>U ′Λ−2U ′>ei∗ · v>V Σ−1U>(UΣV >χ+ ei∗v
>χ)

+χ>V ′ΛU ′>U ′Λ−1V ′>v · e>i∗UΣ−2U>(UΣV >χ+ ei∗v
>χ)|

≤ term1 · term2 + term3 · term4

where for i = 1, 2, 3, 4 we have termi = |veci · χ| and

vec1
= (V ′ΛU ′>U ′Λ−2U ′>ei∗)

>

= (V ′Λ−1U ′>ei∗)
>

so ‖vec1‖ ≤ 1/λd;
vec2
= v>V Σ−1U>(UΣV > + ei∗v

>)

= v> + v>V Σ−1U>ei∗v
>

so ‖vec2‖ ≤ 1 + 1/σd;
vec3
= (V ′ΛU ′>U ′Λ−1V ′>v)>

= v>

so ‖vec3‖ ≤ 1;
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vec4
= e>i∗UΣ−2U>(UΣV > + ei∗v

>)

= e>i∗UΣ−1V > + e>i∗UΣ−2U>ei∗v
>

so ‖vec4‖ ≤ 1/σd + 1/σ2
d where σd and λd are the smallest singular values of X and X ′, respectively. The remainder of the

proof now follows the proof of Claim 4.3 of Blocki et al. (2012) with replacing A to X>, A′ to X ′>, x to ξ and swapping n
and d where necessary.

For the second stage we assume that “else” clause (line 8 of Algorithm 1) is applied and denote X̃ , U
√

Σ2 + ω2In×dV
>

and X̃ ′ , U ′
√

Λ2 + ω2In×dV
′>. The theorem requires an analogue of Lemma 2 to hold, which depends on the following

two conditions:

exp(−ε0/2) ≤
√

det(X̃ ′X̃ ′>)

det(X̃ X̃>)
≤ exp(ε0/2). (6)

Pξ

(
1

2
|ξ>
(
(X̃ X̃>)−1 − (X̃ ′X̃ ′>)−1

)
ξ| ≥ ε0/2

)
≤ δ0. (7)

Derivation of (6) copies the derivation of eq. 6 in Blocki et al. (2012) (p. 16). To derive (7), we start with an observation
regarding X ′X ′> and X̃ ′X̃ ′>:

X ′X ′> = (X + E)(X + E)> = XX> + X ′E> + EX>
X̃ X̃> = U(Σ2 + ω2I)U> = UΣ2U> + ω2I = XX> + ω2I

X̃ ′X̃ ′> = U ′(Λ2 + ω2I)U ′> = U ′Λ2U ′> + ω2I = X ′X ′> + ω2I

=⇒ X̃ ′X̃ ′> − X̃ X̃> = X ′E> + EX>.

(8)

Now we can follow the same outline as in the proof of (3). Fix ξ, then

ξ>
(
(X̃ X̃>)−1 − (X̃ ′X̃ ′>)−1

)
ξ

= ξ>
(
(X̃ X̃>)−1 − (X̃ ′X̃ ′>)−1X̃ X̃>(X̃ X̃>)−1

)
ξ

= ξ>
(
(X̃ X̃>)−1 − (X̃ ′X̃ ′>)−1(X̃ ′X̃ ′> −X ′E> − EX>)(X̃ X̃>)−1

)
ξ

= ξ>
(
(X̃ X̃>)−1 − (X̃ X̃>)−1 − (X̃ ′X̃ ′>)−1(−X ′E> − EX>)(X̃ X̃>)−1

)
ξ

= ξ>(X̃ ′X̃ ′>)−1(X ′E> + EX>)(X̃ X̃>)−1ξ

= ξ>(X̃ ′X̃ ′>)−1(X ′E> − EE> + EE> + EX>)(X̃ X̃>)−1ξ

= ξ>(X̃ ′X̃ ′>)−1((X ′ − E)E> + E(X> + E>))(X̃ X̃>)−1ξ

= ξ>(X̃ ′X̃ ′>)−1(X ′ − E)v · e>i∗(X̃ X̃>)−1ξ

+ξ>(X̃ ′X̃ ′>)−1ei∗ · v>(X> + E>)(X̃ X̃>)−1ξ

(9)

where the second equality follows from (8) and the last equality follows from E = ei∗v
>. The expression in the last line

of (9) is very similar to the one in the derivation of equation in Blocki et al. (2012) (p. 17, second equation array from the
top). The difference is that in order for the proof to go trhough, we need to multiply (X̃ ′X̃ ′>)−1 by X̃ X̃>(X̃ X̃>)−1 in
the second line of (9), while the original proof of Blocki et al. (2012) multiplies (X̃>X̃ )−1 by X̃ ′>X̃ ′(X̃ ′>X̃ ′)−1 (in our
notations), see second equation array from the top, p. 17 of Blocki et al. (2012). The remainder of the proof now follows the
proof of Theorem 4.1 of Blocki et al. (2012) (p. 17).

B.3. Proof of Theorem 2

Proof. Fix x, x′ ∈ X and their images z, z′ ∈ Z . If σmin(X ) ≥ ω, according to Algorithm 1, Z = r−1/2XM (line 7) and

‖z − z′‖2
= ‖r−1/2xM − r−1/2x′M‖2
= r−1‖xM − x′M‖2

and Lemma 1 can be immediately applied.
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If σmin(X ) < ω, according to Algorithm 1, Z = r−1/2X̃M (line 10) and

‖z − z′‖2
= ‖r−1/2x̃M − r−1/2x̃′M‖2
= r−1‖x̃M − x̃′M‖2
≤ (1 + ν)‖x̃− x̃′‖2
≤ (1 + ν)(1 + ω2/σ2

min(X ))‖x− x′‖2

where the first inequality follows from Lemma 1 and the second inequality follows from Lemma 7. Similarly,

‖z − z′‖2
= ‖r−1/2x̃M − r−1/2x̃′M‖2
= r−1‖x̃M − x̃′M‖2
≥ (1− ν)‖x̃− x̃′‖2
≥ (1− ν)‖x− x′‖2

where the first inequality follows from Lemma 1 and the second inequality follows from Lemma 7.

B.4. Bounding the covariance change

Theorem 5. Let a dataset X ⊂ Rd be given and σmin(X ) > 0 be the smallest singular value of X . Let r ∈ N be the input
parameter of Algorithm 1, a dataset Z ⊂ Rr be the output of Algorithm 1 and ω be defined in line 5 of Algorithm 1. Let
d = diam(X )/l where diam(X ) is the diameter of the dataset X . Let ν ∈ (0, 1/2), µ ∈ (0, 1) be given. If ν ≤ 2/d2 and
r ≥ 8 log(n2/µ)/ν2, then the probability of

|kzz′ − kxx′ | ≤ C · kxx′

for all x, x′ ∈ X and their images under Algorithm 1 z, z′ ∈ Z is at least 1− µ where

C ,

{
νd2 if σmin(X ) ≥ ω,
max

(
νd2, 1− exp

(
−0.5(ν + νω2/σ2

min(X ) + ω2/σ2
min(X ))d2

) )
otherwise.

(10)

Remark 5. It immediately follows from Theorem 5 that the probability of kzz′ ≤ (1 + C) · kxx′ for all x, x′ ∈ X and their
images z, z′ ∈ Z is at least 1− µ.

Proof.

kzz′ − kxx′
= σ2

y exp
(
−0.5‖z − z′‖2/l2

)
− σ2

y exp
(
−0.5‖x− x′‖2/l2

)
≤ σ2

y exp
(
−0.5(1− ν)‖x− x′‖2/l2

)
− σ2

y exp
(
−0.5‖x− x′‖2/l2

)
= kxx′

(
exp

(
0.5ν‖x− x′‖2/l2

)
− 1
)

≤ kxx′
(
2 ·
(
0.5ν‖x− x′‖2/l2

))
≤ kxx′ · νd2

where the first inequality follows from Theorem 2 (since the condition (1− ν)‖x− x′‖2 ≤ ‖z − z′‖2 holds in both cases
σmin(X ) ≥ ω and otherwise), and the second inequality follows from the identity exp c ≤ 1 + 2c for c ∈ (0, 1) by setting
c = 0.5ν‖x− x′‖2/l2 since ν ≤ 2/d2 and

0.5ν‖x− x′‖2/l2
≤ 0.5ν (diam(X ))2/l2

≤ 0.5 · 2/d2 · (diam(X ))2/l2

= 1.

(11)
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If σmin(X ) ≥ ω,
kxx′ − kzz′
= σ2

y exp
(
−0.5‖x− x′‖2/l2

)
− σ2

y exp
(
−0.5‖z − z′‖2/l2

)
≤ σ2

y exp
(
−0.5‖x− x′‖2/l2

)
− σ2

y exp
(
−0.5(1 + ν)‖x− x′‖2/l2

)
= kxx′

(
1− exp

(
−0.5ν‖x− x′‖2/l2

))
= kxx′

(
exp

(
0.5ν‖x− x′‖2/l2

)
− 1
)

exp
(
−0.5ν‖x− x′‖2/l2

)
≤ kxx′

(
exp

(
0.5ν‖x− x′‖2/l2

)
− 1
)

≤ kxx′
(
2 ·
(
0.5ν‖x− x′‖2/l2

))
≤ kxx′ · νd2

where the first inequality follows from Theorem 2, since if σmin(X ) ≥ ω, C ′ = 1 in the statement of Theorem 2, the
second inequality follows from 0.5ν‖x− x′‖2/l2 ≥ 0 and the third inequality follows from the identity exp c ≤ 1 + 2c for
c ∈ (0, 1) by setting c = 0.5ν‖x− x′‖2/l2 and (11).

Similarly, if σmin(X ) < ω,

kxx′ − kzz′
= σ2

y exp
(
−0.5‖x− x′‖2/l2

)
− σ2

y exp
(
−0.5‖z − z′‖2/l2

)
≤ σ2

y exp
(
−0.5‖x− x′‖2/l2

)
− σ2

y exp
(
−0.5(1 + ν)(1 + ω2/σ2

min(X ))‖x− x′‖2/l2
)

= kxx′
(
1− exp

(
−0.5(ν + νω2/σ2

min(X ) + ω2/σ2
min(X ))‖x− x′‖2/l2

))
≤ kxx′

(
1− exp

(
−0.5(ν + νω2/σ2

min(X ) + ω2/σ2
min(X ))d2

))
where the first inequality follows from Theorem 2, since if σmin(X ) < ω, C ′ = 1 + ω2/σ2

min(X ) in the statement of
Theorem 2.

B.5. Proof of Theorem 3

First we recall and introduce a few notations which we will use throughout this section. Let X ⊂ Rd be a dataset and
its image under Algorithm 1 be a dataset Z ⊂ Rr, Zt−1 , {z1, . . . , zt−1} be a set of transformed inputs selected by
Algorithm 2 run on transformed dataset Z after t − 1 iterations and the preimage of Zt−1 under Algorithm 1 be a set
Xt−1 , {x1, . . . , xt−1}. Let z ∈ Z be an (unobserved) transformed input and x ∈ X be its preimage under Algorithm 1.
Let f be a latent function sampled from a GP. Define

f̃(z) , f(x)

αt(x,Xt−1) , µt(x) + β
1/2
t σt(x)

αt(z,Zt−1) , µ̃t(z) + β
1/2
t σ̃t(z)

zt , argmax
z∈Z

αt(z,Zt−1).

(12)

That is, f̃ is the latent function f defined over the transformed dataset Z , αt(z,Zt−1) is the function maximized by
Algorithm 2 at iteration t, αt(x,Xt−1) is the function maximized by GP-UCB algorithm run on the original dataset, zt is
the transformed input selected by Algorithm 2 at iteration t and xt is the preimage of zt under Algorithm 1.

Lemma 3. Let δ′ ∈ (0, 1) be given and βt , 2 log(nt2π2/6δ′). Then

|f(x)− µt(x)| ≤ β1/2
t σt(x) ∀x ∈ X ∀t ∈ N

holds with probability at least 1− δ′.

Proof. Lemma 3 above corresponds to Lemma 5.1 in Srinivas et al. (2010); see its proof therein.

Lemma 4. Let δ′ ∈ (0, 1) be given and βt , 2 log(nt2π2/6δ′). Then the probability of

f̃(z∗)− f̃(zt) ≤ 2 max
x,z
|αt(z,Zt−1)− αt(x,Xt−1)|+ 2β

1/2
t σt(xt)

for all t ∈ N is at least 1− δ′ where z∗ is the maximizer of f̃ and x ∈ X is the preimage of z ∈ Z under Algorithm 1.
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Proof.
f̃(z∗)− f̃(zt)
= f(x∗)− f(xt)
≤ αt(x∗,Xt−1)− f(xt)
= αt(x

∗,Xt−1)− αt(z∗,Zt−1) + αt(z
∗,Zt−1)− f(xt)

≤ αt(x∗,Xt−1)− αt(z∗,Zt−1) + αt(zt,Zt−1)− f(xt)
= αt(x

∗,Xt−1)− αt(z∗,Zt−1) + αt(zt,Zt−1)− αt(xt,Xt−1) + αt(xt,Xt−1)− f(xt)
≤ 2 max

x,z
|αt(z,Zt−1)− αt(x,Xt−1)|+ αt(xt,Xt−1)− f(xt)

≤ 2 max
x,z
|αt(z,Zt−1)− αt(x,Xt−1)|+ 2β

1/2
t σt(xt)

where the first equality is due to (12) and x∗ is the maximizer of f , the first and the last inequalities are due to Lemma 3 and
the second inequality is due to the choice of zt in (12).

Lemma 4 resembles Lemma 5.2 of Srinivas et al. (2010) with an added term 2 maxx,z |αt(z,Zt−1) − αt(x,Xt−1)|. It
suggests that in order to bound regret f̃(z∗)− f̃(zt) incurred by Algorithm 2 at iteration t, we need to bound |αt(z,Zt−1)−
αt(x,Xt−1)|. Using the diagonal dominance assumption (Definition 3), we do it in the following two lemmas:

Lemma 5. Let C > 0 be given. If for all x, x′ ∈ X and their images under Algorithm 1 z, z′ ∈ Z holds |kzz′ − kxx′ | ≤
C · kxx′ , for all t = 1, . . . , T matrix KXt−1Xt−1 is diagonally dominant, then for every unobserved transformed input z ∈ Z
and its preimage under Algorithm 1 x ∈ X

|σ̃2
t (z)− σ2

t (x)| ≤ C1/
√
|Xt−1|

where
C1 , Cσy

√
2σ2

y + σ2
n

(√
2(1 + C)2σ2

y/σ
2
n + (2 + C)C

)
.

Proof.

|σ̃2
t (z)− σ2

t (x)|
= |
(
kzz −KzZt−1(KZt−1Zt−1 + σ2

nI)−1KZt−1z

)
−
(
kxx −KxXt−1(KXt−1Xt−1 + σ2

nI)−1KXt−1x

)
|

= |KzZt−1
(KZt−1Zt−1

+ σ2
nI)−1KZt−1z −KxXt−1

(KXt−1Xt−1
+ σ2

nI)−1KXt−1x|
≤ |KzZt−1

(KZt−1Zt−1
+ σ2

nI)−1KZt−1z −KzZt−1
(KXt−1Xt−1

+ σ2
nI)−1KZt−1z|

+ |KzZt−1(KXt−1Xt−1 + σ2
nI)−1KZt−1z −KxXt−1(KXt−1Xt−1 + σ2

nI)−1KZt−1z|
+ |KxXt−1

(KXt−1Xt−1
+ σ2

nI)−1KZt−1z −KxXt−1
(KXt−1Xt−1

+ σ2
nI)−1KXt−1x|

≤ (1 + C)2‖KxXt−1
‖ · σ2

y/σ
2
n ·
√

2C/
√
|Xt−1|+ (2 + C)C · ‖KxXt−1

‖/
√
|Xt−1|

= C‖KxXt−1
‖/
√
|Xt−1|

(√
2(1 + C)2σ2

y/σ
2
n + (2 + C)C

)
≤ Cσy

√
2σ2

y + σ2
n/
√
|Xt−1|

(√
2(1 + C)2σ2

y/σ
2
n + (2 + C)C

)
(13)

where the first equality is due to (1), the second equality is due to kxx = kzz = σ2
y for every x and z, the first inequality is

due to triangle inequality, the second inequality is due to

|KzZt−1(KZt−1Zt−1 + σ2
nI)−1KZt−1z −KzZt−1(KXt−1Xt−1 + σ2

nI)−1KZt−1z|
= |KzZt−1

(
(KZt−1Zt−1

+ σ2
nI)−1 − (KXt−1Xt−1

+ σ2
nI)−1

)
KZt−1z|

≤ ‖KzZt−1
‖2 · ‖(KZt−1Zt−1

+ σ2
nI)−1 − (KXt−1Xt−1

+ σ2
nI)−1‖2

≤ (1 + C)2‖KxXt−1‖2 · ‖(KXt−1Xt−1 + σ2
nI)−1 − (KXt−1Xt−1 + σ2

nI)−1‖2
≤ (1 + C)2‖KxXt−1

‖2 · ‖(KZt−1Zt−1
+ σ2

nI)−1(KZt−1Zt−1
−KXt−1Xt−1

)‖2 · ‖(KXt−1Xt−1
+ σ2

nI)−1‖2
≤ (1 + C)2‖KxXt−1

‖2 · ‖(KZt−1Zt−1
+ σ2

nI)−1‖2 · ‖KZt−1Zt−1
−KXt−1Xt−1

‖2 · ‖(KXt−1Xt−1
+ σ2

nI)−1‖2
≤ (1 + C)2‖KxXt−1‖2 · 1/σ2

n · ‖KZt−1Zt−1 −KXt−1Xt−1‖2 · ‖(KXt−1Xt−1 + σ2
nI)−1‖2

≤ (1 + C)2‖KxXt−1‖2 · 1/σ2
n ·
√

2Cσ2
y/
√
|Xt−1| · ‖(KXt−1Xt−1 + σ2

nI)−1‖2
≤ (1 + C)2‖KxXt−1

‖2 · 1/σ2
n ·
√

2Cσ2
y/
√
|Xt−1| · 1/(

√
|Xt−1|‖KxXt−1

‖)
= (1 + C)2‖KxXt−1‖ · σ2

y/σ
2
n ·
√

2C/|Xt−1|
≤ (1 + C)2‖KxXt−1

‖ · σ2
y/σ

2
n ·
√

2C/
√
|Xt−1|
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where the first inequality is due to property of quadratic forms |v>Av| ≤ ‖v‖2 · ‖A‖2 for any vector v (see Theorem 2.11,
Section II.2.2 in Stewart & Sun (1990)), the second inequality follows from the statement of the lemma and Remark 5
to Theorem 5, the third inequality follows from Theorem 2.5 (see Section III.2.2 in Stewart & Sun (1990)), the fourth
inequality is due to the submultiplicativity of the spectral norm (see Section II.2.2, p. 69 in Stewart & Sun (1990)), the
fifth inequality follows from Lemma 8, the sixth inequality follows from Lemma 9, the second last inequality follows from
Lemma 10 and the last inequality follows from |Xt−1| ≥ 1;

and
|KzZt−1

(KXt−1Xt−1
+ σ2

nI)−1KZt−1z −KxXt−1
(KXt−1Xt−1

+ σ2
nI)−1KZt−1z|

+ |KxXt−1(KXt−1Xt−1 + σ2
nI)−1KZt−1z −KxXt−1(KXt−1Xt−1 + σ2

nI)−1KXt−1x|
= |(KzZt−1

−KxXt−1
)(KXt−1Xt−1

+ σ2
nI)−1KZt−1z|

+ |KxXt−1
(KXt−1Xt−1

+ σ2
nI)−1(KZt−1z −KXt−1x)|

≤ ‖KzZt−1 −KxXt−1‖ · ‖(KXt−1Xt−1 + σ2
nI)−1‖2 · ‖KZt−1z‖

+ ‖KxXt−1
‖ · ‖(KXt−1Xt−1

+ σ2
nI)−1‖2 · ‖KZt−1z −KXt−1x‖

≤ (1 + 1 + C) · ‖KzZt−1
−KxXt−1

‖ · ‖(KXt−1Xt−1
+ σ2

nI)−1‖2 · ‖KXt−1x‖
≤ (2 + C) · C‖KxXt−1‖ · ‖(KXt−1Xt−1 + σ2

nI)−1‖2 · ‖KxXt−1‖
≤ (2 + C) · C‖KxXt−1‖ · 1/(

√
|Xt−1|‖KxXt−1‖) · ‖KxXt−1‖

= (2 + C)C · ‖KxXt−1
‖/
√
|Xt−1|

where the first inequality is due to property of bilinear forms |u>Av| ≤ ‖u‖ · ‖A‖2 · ‖v‖ for any vectors u, v (see Theorem
2.11, Section II.2.2 in Stewart & Sun (1990)), the second and the third inequalities follow from the statement of the lemma
and Remark 5 to Theorem 5 and the last inequality follows from Lemma 10.

The last inequality in (13) follows from

‖KxXt−1
‖2

= ‖KxXt−1‖2 · ψ−1max(KXt−1Xt−1
+ σ2

nI) · ψmax(KXt−1Xt−1
+ σ2

nI)
= ‖KxXt−1

‖2 · ψmin((KXt−1Xt−1
+ σ2

nI)−1) · ψmax(KXt−1Xt−1
+ σ2

nI)
= ‖KxXt−1‖2 · ψmin((KXt−1Xt−1 + σ2

nI)−1) · ‖KXt−1Xt−1 + σ2
nI‖2

= ‖KxXt−1
‖2 · ψmin((KXt−1Xt−1

+ σ2
nI)−1) · (‖KXt−1Xt−1

‖2+σ2
n)

≤ ‖KxXt−1
‖2 · ψmin((KXt−1Xt−1

+ σ2
nI)−1) · (2σ2

y + σ2
n)

≤ KxXt−1
(KXt−1Xt−1

+ σ2
nI)−1KXt−1x · (2σ2

y + σ2
n)

≤ kxx · (2σ2
y + σ2

n)
= σ2

y(2σ2
y + σ2

n)

where ψmax(·) and ψmin(·) denote the largest and the smallest eigenvalues of a matrix, respectively, the first fourth equalities
are properties of eigenvalues, the first inequality is due to Lemma 11, the second inequality follows from Lemma 12, the third
inequality follows from the fact that conditioning does not increase variance and the last equality is due to kxx = σ2

y .

Lemma 6. Let C > 0 be given. If for all x, x′ ∈ X and their images under Algorithm 1 z, z′ ∈ Z holds |kzz′ − kxx′ | ≤
C ·kxx′ , for all t = 1, . . . , T matrixKXt−1Xt−1 is diagonally dominant and |yt| ≤ L, then for every unobserved transformed
input z ∈ Z and its preimage under Algorithm 1 x ∈ X

|µ̃t(z)− µt(x)| ≤ CL+ C2/
√
|Xt−1|

where
C2 =

√
2(1 + C) · Cσ2

y/σ
2
n · L.

Proof.
|µ̃t(z)− µt(x)|
= |KzZt−1

(KZt−1Zt−1
+ σ2

nI)−1yt−1 −KxXt−1
(KXt−1Xt−1

+ σ2
nI)−1yt−1|

≤ |KzZt−1
(KXt−1Xt−1

+ σ2
nI)−1yt−1 −KxXt−1

(KXt−1Xt−1
+ σ2

nI)−1yt−1|
+ |KzZt−1(KZt−1Zt−1 + σ2

nI)−1yt−1 −KzZt−1(KXt−1Xt−1 + σ2
nI)−1yt−1|

= |(KzZt−1
−KxXt−1

)(KXt−1Xt−1
+ σ2

nI)−1yt−1|
+ |KzZt−1

(
(KZt−1Zt−1

+ σ2
nI)−1 − (KXt−1Xt−1

+ σ2
nI)−1

)
yt−1|

≤ C · L+ C2/
√
|Xt−1|
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where the first equality is due to (1), the first inequality is due to triangle inequality and the second inequality follows from

|(KzZt−1
−KxXt−1

)(KXt−1Xt−1
+ σ2

nI)−1yt−1|
≤ ‖KzZt−1 −KxXt−1‖ · ‖(KXt−1Xt−1 + σ2

nI)−1‖2 · ‖yt−1‖
≤ C‖KxXt−1

‖ · ‖(KXt−1Xt−1
+ σ2

nI)−1‖2 · ‖yt−1‖
≤ C‖KxXt−1

‖ · 1/(
√
|Xt−1|‖KxXt−1

‖) · ‖yt−1‖
≤ C · L

where the first inequality is due to property of bilinear forms |u>Av| ≤ ‖u‖ · ‖A‖2 · ‖v‖ for any vectors u, v (see Theorem
2.11, Section II.2.2 in Stewart & Sun (1990)), the second inequality follows from the statement of the lemma, the third
inequality follows from Lemma 10 and the last inequality follows from the condition |yt| ≤ L for all t = 1, . . . , T ;

and

|KzZt−1

(
(KZt−1Zt−1

+ σ2
nI)−1 − (KXt−1Xt−1

+ σ2
nI)−1

)
yt−1|

≤ ‖KzZt−1‖ · ‖(KZt−1Zt−1 + σ2
nI)−1 − (KXt−1Xt−1 + σ2

nI)−1‖2 · ‖yt−1‖
≤ ‖KzZt−1

‖ · ‖(KZt−1Zt−1
+ σ2

nI)−1‖2 · ‖(KZt−1Zt−1
−KXt−1Xt−1

)(KXt−1Xt−1
+ σ2

nI)−1‖2 · ‖yt−1‖
≤ ‖KzZt−1‖ · ‖(KZt−1Zt−1 + σ2

nI)−1‖2 · ‖KZt−1Zt−1 −KXt−1Xt−1‖2 · ‖(KXt−1Xt−1 + σ2
nI)−1‖2 · ‖yt−1‖

≤ ‖KzZt−1
‖ · 1/σ2

n · ‖KZt−1Zt−1
−KXt−1Xt−1

‖2 · ‖(KXt−1Xt−1
+ σ2

nI)−1‖2 · ‖yt−1‖
≤ ‖KzZt−1

‖ · 1/σ2
n ·
√

2Cσ2
y/
√
|Xt−1| · ‖(KXt−1Xt−1 + σ2

nI)−1‖2 · ‖yt−1‖
≤ ‖KzZt−1

‖ · 1/σ2
n ·
√

2Cσ2
y/
√
|Xt−1| · 1/(

√
|Xt−1|‖KxXt−1

‖) · ‖yt−1‖
≤ (1 + C)‖KxXt−1‖ · 1/σ2

n ·
√

2Cσ2
y/
√
|Xt−1| · 1/(

√
|Xt−1|‖KxXt−1‖) · ‖yt−1‖

≤
√

2(1 + C) · Cσ2
y/σ

2
n · L/

√
|Xt−1|

= C2/
√
|Xt−1|

where the first inequality is due to property of bilinear forms |u>Av| ≤ ‖u‖ · ‖A‖2 · ‖v‖ for any vectors u, v (see Theorem
2.11, Section II.2.2 in Stewart & Sun (1990)), the second inequality follows from Theorem 2.5 (see Section III.2.2 in Stewart
& Sun (1990)), the third inequality is due to the submultiplicativity of the spectral norm (see Section II.2.2, p. 69 in Stewart
& Sun (1990)) the fourth inequality follows from Lemma 8, the fifth inequality follows from Lemma 9, the third last
inequality follows from Lemma 10, the second last inequality follows from the statement of the lemma and Remark 5 to
Theorem 5 and the last inequality follows from the condition |yt| ≤ L for all t = 1, . . . , T .

Proof of the theorem. By Lemma 4 for δ′ = δucb/2 and βt = 2 log(nt2π2/3δucb) for all t ∈ N:

rt
= f(x∗)− f(xt)

= f̃(z∗)− f̃(zt)

≤ 2 max
x,z
|αt(z,Zt−1)− αt(x,Xt−1)|+ 2β

1/2
t σt(xt)

≤ 2 max
x,z
|µ̃t(z)− µt(x)|+ 2β

1/2
t max

x,z
|σ̃2
t (z)− σ2

t (x)|+ 2β
1/2
t σt(xt)

(14)

with probability at least 1− δucb/2 where the second equality follows from (12), the first inequality follows from Lemma 4
and the second inequality follows from triangle inequality. Suppose ν ∈ (0,min(1/2, 2/d2)), µ ∈ (0, 1) are given (we
will set the exact values of µ, ν later) and the input parameter of Algorithm 1 r ≥ 8 log(n2/µ)/ν2. By Theorem 5 for all
x, x′ ∈ X and their images under Algorithm 1 z, z′ ∈ Z holds |kzz′ − kxx′ | ≤ C · kxx′ with probability at least 1− µ. Let
µ = δucb/2. Then we can apply Lemma 5 and Lemma 6 to (14). Using the union bound we obtain that for all t = 1, . . . , T

rt

≤ 2 max
x,z
|µ̃t(z)− µt(x)|+ 2β

1/2
t max

x,z
|σ̃2
t (z)− σ2

t (x)|+ 2β
1/2
t σt(xt)

≤ 2(CL+ C2/
√
|Xt−1|) + 2C1β

1/2
t /

√
|Xt−1|+ 2β

1/2
t σt(xt)

(15)

with probability at least 1 − δucb where C1 and C2 are defined in Lemma 5 and Lemma 6, respectively. Summing over
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t = 1, . . . , T :

T∑
t=1

r2t

≤ 4

T∑
t=1

(
CL+ C2/

√
|Xt−1|+ C1β

1/2
t /

√
|Xt−1|+ β

1/2
t σt(xt)

)2
≤ 12

T∑
t=1

(
C2L2 + (C2 + C1β

1/2
t )2/|Xt−1|+ βtσ

2
t (xt)

)
= 12C2L2T + 12

T∑
t=1

(C2 + C1β
1/2
t )2|Xt−1|+ 12

T∑
t=1

βtσ
2
t (xt)

≤ 12C2L2T + 24(C2 + C1β
1/2
T )2 log T + 12βT

T∑
t=1

σ2
t (xt)

≤ 12C2L2T + 24(C2 + C1β
1/2
T )2 log T + 12βT / log(1 + σ−2n )

T∑
t=1

log(1 + σ−2n σ2
t (xt))

≤ 12C2L2T + 24(C2 + C1β
1/2
T )2 log T + 24βT / log(1 + σ−2n ) · γT

(16)

where the first inequality follows from (15), the second inequality follows from identity (a+ b+ c)2 ≤ 3(a2 + b2 + c2),
the third inequality follows from

∑T
t=1 1/|Xt−1| ≤

∑T
t=1 1/t ≤ 2 log T and the fact that βt is nondecreasing, the fourth

inequality corresponds to an intermediate step of Lemma 5.4 in Srinivas et al. (2010) and the last step follows from Lemma
5.3 and Lemma 5.4 in Srinivas et al. (2010) where γT , maxXT⊂X I[fX ;yt−1] = O

(
(log T )d+1

)
and fX , (f(x))>x∈X

(see Theorem 5 in Srinivas et al. (2010)). Therefore,

S2
T

≤ R2
T /T

2

≤
T∑
t=1

r2t /T

≤ 12C2L2 + 24(C2 + C1β
1/2
T )2 log T/T + 24βT / log(1 + σ−2n )γT /T

(17)

where the second inequality follows from Cauchy-Schwarz inequality and the last inequality follows from (16). If
σmin(X ) ≥ ω then, according to Theorem 5, C = νd2. To guarantee that 12C2L2 ≤ ε2ucb and to satisfy the premise of
Lemma 1 (i.e. ν ≤ 1/2) and Theorem 5 (i.e. ν ≤ 2/d2), we need to set the value of ν = min(εucb/(2

√
3d2L), 2/d2, 1/2).

Since ν ≤ 2/d2 and hence C = νd2 ≤ 2

C1

= Cσy

√
2σ2

y + σ2
n

(√
2(1 + C)2σ2

y/σ
2
n + (2 + C)C

)
≤ 2σy

√
2σ2

y + σ2
n

(√
2(1 + 2)2σ2

y/σ
2
n + (2 + 2) · 2

)
= O

(
σy

√
σ2
y + σ2

n(σ2
y/σ

2
n + 1)

)
and

C2

=
√

2(1 + C) · Cσ2
y/σ

2
n · L

≤
√

2(1 + 2) · 2σ2
y/σ

2
n · L

= O(σ2
y/σ

2
n · L)

where C1 and C2 are defined in Lemma 5 and Lemma 6, respectively.
Remark 6. If σmin(X ) < ω, a similar form of regret bound to that of (17) can be proven: According to Theorem 5,
C = max(νd2, 1 − exp

(
−0.5(ν + νω2/σ2

min(X ) + ω2/σ2
min(X ))d2

)
) instead of C = νd2 and the entire proof of

Theorem 3 can be directly copied to reach (17). In this case, however, the term 12C2L2 in (17) cannot be set arbitrarily
small. That is explained by the fact that when σmin(X ) < ω, Algorithm 1 increases the singular values of dataset X (see
line 9) and the pairwise distances between the original inputs from X are no longer approximately the same as the distances
between their respective transformed images (see Theorem 2) resulting in a looser regret bound.
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B.6. Auxiliary results

Lemma 7. Let a dataset X ⊂ Rd be given. Let a dataset X̃ ⊂ Rd be defined in line 9 of Algorithm 1 (i.e., X̃ =
U
√

Σ2 + ω2In×dV
> where X = UΣV > is the singular value decomposition of X ). Let σmin(X ) > 0 be the smallest

singular value of X . Then for all x, x′ ∈ X and their corresponding x̃, x̃′ ∈ X̃ (when viewing datasets X and X̃ as
matrices)

‖x− x′‖ ≤ ‖x̃− x̃′‖ ≤
√

1 + ω2/σ2
min(X )‖x− x′‖.

Proof. Denote the rows of U as u(i) so that

U =

u(1)...
u(n)

 .
For i = 1, . . . , n denote the input in the i-th row of the datset X (X̃ ) viewed as matrix as x(i) (x̃(i)). From the singular value
decomposition, x(i) = u(i)ΣV

> and x̃(i) = u(i)
√

Σ2 + In×dω2V > Then for i, j = 1, . . . , n

‖x̃(i) − x̃(j)‖2
= ‖(u(i) − u(j))

√
Σ2 + ω2In×dV

>‖2

= (u(i) − u(j))
√

Σ2 + ω2In×dV
>V
√

Σ2 + ω2In×d
>

(u(i) − u(j))>

= (u(i) − u(j))
√

Σ2 + ω2In×d
√

Σ2 + ω2In×d
>

(u(i) − u(j))>

=

min(n,d)∑
k=1

(u(i)k − u(j)k)2(σ2
k + ω2)

≤
min(n,d)∑
k=1

(u(i)k − u(j)k)2σ2
k(1 + ω2/σ2

min(X ))

= (1 + ω2/σ2
min(X ))(u(i) − u(j))ΣΣ>(u(i) − u(j))>

= (1 + ω2/σ2
min(X ))(u(i) − u(j))ΣV >V Σ>(u(i) − u(j))>

= (1 + ω2/σ2
min(X ))‖(u(i) − u(j))ΣV >‖2

= (1 + ω2/σ2
min(X ))‖x(i) − x(j)‖2

(18)

where the second and the second last equalities follow from ‖v‖2 = vv> for any row vector v, the third and the third last
equalities follow from orthonormality of matrix V , and the inequality follows from

σ2
k + ω2

= σ2
k(1 + ω2/σ2

k)
≤ σ2

k(1 + ω2/σ2
min(X ))

where the inequality follows from σk ≥ σmin(X ) for every k = 1, . . . ,min(n, d).

Similarly,
‖x̃(i) − x̃(j)‖2

=

min(n,d)∑
k=1

(u(i)k − u(j)k)2(σ2
k + ω2)

=

min(n,d)∑
k=1

(u(i)k − u(j)k)2σ2
k + ω2

min(n,d)∑
k=1

(u(i)k − u(j)k)2

≥
min(n,d)∑
k=1

(u(i)k − u(j)k)2σ2
k

= ‖x(i) − x(j)‖2

(19)

where the first and the last equalities follow from the fourth and the fifth equalities of (18), respectively. Since (18) and (19)
both hold for all i, j = 1, . . . , n, the lemma follows.
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Lemma 8. In the notations of Section B.5, for all t = 1, . . . , T holds ‖(KZt−1Zt−1
+ σ2

nI)−1‖2 ≤ 1/σ2
n.

Proof. Since (KZt−1Zt−1
+ σ2

nI)−1 is positive definite, by definition of spectral norm for all t = 1, . . . , T and Zt−1

‖(KZt−1Zt−1
+ σ2

nI)−1‖2
= ψmax((KZt−1Zt−1

+ σ2
nI)−1)

=
1

ψmin(KZt−1Zt−1
+ σ2

nI)

=
1

ψmin(KZt−1Zt−1
) + σ2

n

≤ 1/σ2
n

where ψmax(·) and ψmin(·) denote the largest and the smallest eigenvalues of a matrix, respectively, the second and
the third equalities are properties of eigenvalues and the inequality is due to the fact that matrix KZt−1Zt−1

is positive
semidefinite.

Lemma 9. In the notations of Section B.5, if for all x, x′ ∈ X and their images under Algorithm 1 z, z′ ∈ Z holds
|kzz′ − kxx′ | ≤ C · kxx′ , and for all t = 1, . . . , T matrix KXt−1Xt−1

is diagonally dominant (Definition 3), then

‖KZt−1Zt−1 −KXt−1Xt−1‖2 ≤
√

2Cσ2
y/
√
|Xt−1|.

Proof. Fix t = 1, . . . , T . For some i = 1, . . . , t− 1:

‖KZt−1Zt−1 −KXt−1Xt−1‖22
= ψmax

(
(KZt−1Zt−1 −KXt−1Xt−1)>(KZt−1Zt−1 −KXt−1Xt−1)

)
= ψmax

(
(KZt−1Zt−1

−KXt−1Xt−1
)2
)

≤
∑
j,j 6=i

|[(KZt−1Zt−1
−KXt−1Xt−1

)2]ij |+ [(KZt−1Zt−1
−KXt−1Xt−1

)2]ii

≤ 2C2σ4
y/
(√
|Xt−1| − 1 + 1

)2
≤ 2C2σ4

y/|Xt−1|

where ψmax(·) denotes the largest eigenvalue of a matrix, the first equality is the definition of spectral norm, the second
equality follows from the fact that matricesKZt−1Zt−1

andKXt−1Xt−1
are symmetric, the first inequality is due to Gershgorin

circle theorem, the last inequality follows from
√
|Xt−1| − 1 + 1 ≥

√
|Xt−1| and the second last inequality follows from∑

j,j 6=i

|[(KZt−1Zt−1
−KXt−1Xt−1

)2]ij |

=
∑
j,j 6=i

|
∑
p

[KZt−1Zt−1
−KXt−1Xt−1

]ip[KZt−1Zt−1
−KXt−1Xt−1

]pj |

=
∑
j,j 6=i

|
∑
p

(kzizp − kxixp
)(kzpzj − kxpxj

)|

=
∑
j,j 6=i

|
∑

p,p 6=j,i

(kzizp − kxixp
)(kzpzj − kxpxj

)|

≤
∑
j,j 6=i

∑
p,p 6=j,i

|kzizp − kxixp
| · |kzpzj − kxpxj

|

≤ C2
∑
j,j 6=i

∑
p,p 6=j

kxixp
· kxpxj

= C2
∑

p,p 6=j,i

kxixp

∑
j,j 6=i,p

kxpxj

≤ C2
∑

p,p 6=j,i

kxixp
kxpxp

/
(√
|Xt−1| − 1 + 1

)
= C2σ2

y/
(√
|Xt−1| − 1 + 1

) ∑
p,p 6=j,i

kxixp

≤ C2σ2
y/
(√
|Xt−1| − 1 + 1

)
kxixi/

(√
|Xt−1| − 1 + 1

)
= C2σ4

y/
(√
|Xt−1| − 1 + 1

)2
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where the third, the fifth and the last equalities follow from kzpzp = kxpxp
= σ2

y for every p, the first inequality follows
from triangle inequality, the second inequality follows from the statement of the lemma, the third and the last inequalities
follow from the diagonal dominance property of KXt−1Xt−1 (Definition 3); and

[(KZt−1Zt−1 −KXt−1Xt−1)2]ii

=
∑
p

[KZt−1Zt−1
−KXt−1Xt−1

]ip[KZt−1Zt−1
−KXt−1Xt−1

]pi

=
∑
p

[KZt−1Zt−1
−KXt−1Xt−1

]2ip

=
∑
p

(kzizp − kxixp)2

=
∑
p,p 6=i

(kzizp − kxixp
)2

≤ C2
∑
p,p 6=i

k2xixp

≤ C2
( ∑
p,p 6=i

kxixp

)2
≤ C2k2xixi

/
(√
|Xt−1| − 1 + 1

)2
= C2σ4

y/
(√
|Xt−1| − 1 + 1

)2
where the second equality follows from the fact that KZt−1Zt−1 and KXt−1Xt−1 are symmetric, the fourth and the last
equalities follow from kzpzp = kxpxp = σ2

y for every p, the first inequality follows from the statement of the lemma and the
last inequality follows from the diagonal dominance of KXt−1Xt−1

(Definition 3).

Lemma 10. In the notations of Section B.5, if for all t = 1, . . . , T matrix KXt−1Xt−1
is diagonally dominant (Definition 3),

then for any unobserved original input x ∈ X at iteration t

‖(KXt−1Xt−1
+ σ2

nI)−1‖2 ≤ 1/(
√
|Xt−1|‖KxXt−1

‖).

.

Proof. By applying Gershgorin circle theorem for KXt−1Xt−1
:

ψmin(KXt−1Xt−1
)

≥ min
xi∈Xt−1

(
kxixi

−RXt−1
(xi)

)
= kxx − max

xi∈Xt−1

RXt−1
(xi)

≥ (
√
|Xt−1|+ 1) max

xi∈Xt−1∪{x}
RXt−1∪{x}(xi)− max

xi∈Xt−1

RXt−1
(xi)

where ψmin(·) denotes the smallest eigenvalue of a matrix, RXt−1(xi) ,
∑
xj∈Xt−1\{xi} kxixj

, the first equality follows
from the fact that kxx = σ2

y = kxixi
for all xi and x, and the second inequality holds because K(Xt−1∪{x})(Xt−1∪{x}) is as-

sumed to be diagonally dominant. On the other hand, since x /∈ Xt−1,RXt−1∪{x}(xi) = RXt−1(xi)+kxix for all xi ∈ Xt−1,
which immediately implies maxxi∈Xt−1∪{x}RXt−1∪{x}(xi) ≥ maxxi∈Xt−1 RXt−1∪{x}(xi) ≥ maxxi∈Xt−1 RXt−1(xi).
Plugging this into above inequality,

ψmin(KXt−1Xt−1)

≥ (
√
|Xt−1|+ 1) max

xi∈Xt−1∪{x}
RXt−1∪{x}(xi)− max

xi∈Xt−1

RXt−1
(xi)

≥
√
|Xt−1| max

xi∈Xt−1∪{x}
RXt−1∪{x}(xi)

≥
√
|Xt−1|RXt−1∪{x}(x).

Since ‖KxXt−1
‖ =

√∑
xi∈Xt−1

k2xix ≤
∑
xi∈Xt−1

kxix = RXt−1∪{x}(x), it follows that ψmin(KXt−1Xt−1
) ≥
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|Xt−1|‖KxXt−1

‖. Finally,
‖(KXt−1Xt−1

+ σ2
nI)−1‖2

= 1/(ψmin(KXt−1Xt−1) + σ2
nI)

≤ 1/(ψmin(KXt−1Xt−1))

≤ 1/
(√
|Xt−1|‖KxXt−1‖

)
.

Lemma 11. In the notations of Section B.5, if for all t = 1, . . . , T matrix KXt−1Xt−1
is diagonally dominant (Definition 3),

then ‖KXt−1Xt−1‖2 ≤ 2σ2
y .

Proof. Fix all t = 1, . . . , T . By applying Gershgorin circle theorem to matrix KXt−1Xt−1 , for some point xi ∈ Xt−1:

|ψmax(KXt−1Xt−1
)− kxixi

|
≤

∑
xj∈Xt−1\xi

kxixj

≤ kxixi/
(√
|Xt−1| − 1 + 1

)
= σ2

y/
(√
|Xt−1| − 1 + 1

)
where ψmax(·) denotes the largest eigenvalue of a matrix, the second inequality is due to diagonal dominance property of
matrix KXt−1Xt−1

and the equality is due to kxixi
= σ2

y for every xi. Since KXt−1Xt−1
is a symmetric, positive-semidefinite

matrix, it follows that
‖KXt−1Xt−1‖2
= ψmax(KXt−1Xt−1

)

≤ σ2
y/
(√
|Xt−1| − 1 + 1

)
+ kxixi

≤ σ2
y

(
1 + 1/(

√
|Xt−1| − 1 + 1)

)
≤ 2σ2

y.

.

Lemma 12. In the notations of Section B.5, for all t = 1, . . . , T and any unobserved input x ∈ X at iteration t
‖KxXt−1

‖2 · ψmin((KXt−1Xt−1
+ σ2

nI)−1) ≤ KxXt−1
(KXt−1Xt−1

+ σ2
nI)−1KXt−1x where ψmin(·) denotes the smallest

eigenvalue of a matrix.

Proof. Since (KXt−1Xt−1 + σ2
nI)−1 is a symmetric, positive-definite matrix, there exists an orthonormal basis comprising

the eigenvectors E , [e1 . . . e|Xt−1|] (e>i ei = 1 and e>i ej = 0 for i 6= j) and their associated positive eigenvalues

Ψ−1 , Diag[ψ−11 , . . . , ψ−1|Xt−1|] such that (KXt−1Xt−1
+ σ2

nI)−1 = EΨ−1E> (i.e., spectral theorem). Denote {pi}|Xt−1|
i=1

as the set of coefficients when KXt−1x is projected on E. Then

KxXt−1
(KXt−1Xt−1

+ σ2
nI)−1KXt−1x

=

( |Xt−1|∑
i=1

pie
>
i

)
(KXt−1Xt−1

+ σ2
nI)−1

( |Xt−1|∑
i=1

piei

)

=

( |Xt−1|∑
i=1

pie
>
i

)( |Xt−1|∑
i=1

pi(KXt−1Xt−1
+ σ2

nI)−1ei

)

=

( |Xt−1|∑
i=1

pie
>
i

)( |Xt−1|∑
i=1

piψ
−1
i ei

)

=

|Xt−1|∑
i=1

p2iψ
−1
i

≥ ψmin((KXt−1Xt−1
+ σ2

nI)−1)

|Xt−1|∑
i=1

p2i

= ψmin((KXt−1Xt−1 + σ2
nI)−1) ‖KxXt−1‖2.


