
Quantum Bayesian Optimization

Zhongxiang Dai*1, Gregory Kang Ruey Lau*1,2, Arun Verma1, Yao Shu1,
Bryan Kian Hsiang Low1, Patrick Jaillet3

1Department of Computer Science, National University of Singapore
2CNRS@CREATE, 1 Create Way, #08-01 Create Tower, Singapore 138602

3Department of Electrical Engineering and Computer Science, MIT
dzx@nus.edu.sg, greglau@comp.nus.edu.sg, arun@comp.nus.edu.sg,

shuyao95@u.nus.edu, lowkh@comp.nus.edu.sg, jaillet@mit.edu

Abstract

Kernelized bandits, also known as Bayesian optimization (BO), has been a prevalent
method for optimizing complicated black-box reward functions. Various BO
algorithms have been theoretically shown to enjoy upper bounds on their cumulative
regret which are sub-linear in the number T of iterations, and a regret lower bound
of Ω(

√
T) has been derived which represents the unavoidable regrets for any

classical BO algorithm. Recent works on quantum bandits have shown that with
the aid of quantum computing, it is possible to achieve tighter regret upper bounds
better than their corresponding classical lower bounds. However, these works are
restricted to either multi-armed or linear bandits, and are hence not able to solve
sophisticated real-world problems with non-linear reward functions. To this end,
we introduce the quantum-Gaussian process-upper confidence bound (Q-GP-UCB)
algorithm. To the best of our knowledge, our Q-GP-UCB is the first BO algorithm
able to achieve a regret upper bound of O(poly log T), which is significantly
smaller than its regret lower bound of Ω(

√
T) in the classical setting. Moreover,

thanks to our novel analysis of the confidence ellipsoid, our Q-GP-UCB with the
linear kernel achieves a smaller regret than the quantum linear UCB algorithm
from the previous work. We use simulations, as well as an experiment using a real
quantum computer, to verify that the theoretical quantum speedup achieved by our
Q-GP-UCB is also potentially relevant in practice.

1 Introduction
Kernelized bandits [9], also named Bayesian optimization (BO) [10, 11, 16, 19, 32], has been an
immensely popular method for various applications involving the optimization of complicated black-
box reward functions. For example, BO has been extensively used to optimize the hyperparameters of
machine learning (ML) models [12, 14, 22], the parameters of computationally expensive simulators
[5], etc. In every iteration t = 1, . . . , T , BO chooses an arm/input xt and then queries the reward
function f for a noisy observation yt = f(xt)+ ζt where ζt is a sub-Gaussian noise. In addition to its
impressive practical performance, BO is also equipped with solid theoretical guarantees. A number
of commonly adopted BO algorithms have been theoretically shown to enjoy sub-linear upper bounds
on their cumulative regret [9, 33], which ensures that they are guaranteed to be able to find the global
optimum of the reward function as T (i.e., the total number of function queries) increases. On the
other hand, a lower bound of Ω(

√
T) (ignoring additional log factors) on the cumulative regret of BO

has been shown [31], which represents the fundamental limit of any BO algorithm (in the classical
setting). In other words, no classical BO algorithm can achieve a cumulative regret smaller than
Ω(

√
T). This naturally begs the question: can we leverage more advanced technology to go beyond

* Equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

the classical setting and hence break this fundamental limit of Ω(
√
T)? In this work, we give an

affirmative answer by showing that this can be achieved with the aid of quantum computing [34].

Quantum bandits, which incorporates quantum computing into bandit algorithms, has been studied by
a number of recent works [8, 38, 40, 41]. Notably, the recent work of [38] has introduced quantum
variants of classical algorithms for multi-armed bandits (MAB) and stochastic linear bandits (SLB).
In the setting of quantum bandits adopted by [38], every query to the reward function f at the arm
xt (in the classical setting) is replaced by a chance to access a quantum oracle, which encodes
the reward distribution for the arm xt. For every selected arm xt, [38] has proposed to adopt the
quantum Monte Carlo (QMC) algorithm [4, 28] as a subroutine to obtain an accurate estimation
of f(xt) in an efficient way, i.e., using a small number of queries to the quantum oracle (Lemma
1). As a result, [38] has shown that the regrets of the quantum algorithms for both MAB and SLB
are significantly improved compared with their classical counterparts and are smaller than their
classical lower bounds. However, both MAB and SLB fall short when optimizing complex real-world
functions (e.g., optimizing the hyperparameters of ML models). This is because MAB is unable to
exploit the correlations among the arms to model the reward function, and the assumption of a linear
reward function adopted by SLB is usually too restrictive in practice. Therefore, designing a quantum
bandit algorithm capable of optimizing sophisticated non-linear reward functions, which is a critical
step towards practically useful quantum bandit algorithms, is still an open problem. In this work, we
resolve this open problem by proposing the first algorithm for quantum BO.

Similar to [38], in our quantum BO problem setting, queries to the reward function in the classical
setting are replaced by access to a quantum oracle encoding the reward distribution. As discussed
in [38, 39], a quantum oracle is available when the learning environment is implemented by a
quantum algorithm, which makes the setting of our quantum BO fairly general. For example, our
quantum BO algorithm may be used to optimize the hyperparameters of quantum ML algorithms
[3], such as quantum support vector machines (SVMs) [29], quantum neural networks (NNs) [1, 18],
among others. It may also be used to optimize the parameters of simulators implemented on a
quantum computer, or for applications involving quantum systems where the data produced is
inherently quantum. Moreover, our quantum BO algorithm could also be applied to classical data
and algorithms, because as discussed in [39], any classical computer program can be converted to a
quantum circuit, allowing it to serve as a quantum oracle in our quantum BO algorithm.

In this work, we introduce the first quantum BO algorithm: quantum-Gaussian process-upper
confidence bound (Q-GP-UCB). For every selected arm xs, our Q-GP-UCB algorithm (Algo. 1)
adopts the QMC subroutine (Lemma 1) to efficiently estimate the corresponding reward function
value f(xs) to satisfy a target estimation error ϵs. Every arm xs is selected based on our weighted
GP posterior distribution, in which every previously selected arm xs is given a weight of 1/ϵ2s which
is inversely related to its estimation error. The theoretical analysis of our Q-GP-UCB is faced with
non-trivial technical challenges, and our contributions can be summarized as follows:

• We analyze the growth rate of the weighted information gain (Sec. 5.1) which arises due to the use
of our weighted GP regression (Sec. 4.1), and show its connection with the standard maximum
information gain commonly used in the analysis of BO/kernelized bandits [9, 33]. Our analysis
here may be of broader independent interest for future works adopting weighted GP regression.

• We derive a tight confidence ellipsoid which gives a guarantee on the concentration of the reward
function around the weighted GP posterior mean (Sec. 5.3), and discuss the intuition behind
our proof which corresponds to an interesting interpretation about our Q-GP-UCB algorithm. A
particularly crucial and novel step in our analysis relies on the recognition to apply the concentration
inequality for 1-sub-Gaussian noise (Sec. 5.3).

• We prove that our Q-GP-UCB achieves a regret upper bound of O(poly log T) for the commonly
used squared exponential (SE) kernel (Secs. 5.4 and 5.5), which is considerably smaller than the
classical regret lower bound of Ω(

√
T) [31] and hence represents a significant quantum speedup.

• By using a similar proof technique to the one adopted for our tight confidence ellipsoid (Sec. 5.3),
we improve the confidence ellipsoid for the quantum linear UCB (Q-LinUCB) algorithm [38]. This
improved analysis leads to a tighter regret upper bound for Q-LinUCB, which matches the regret
of our Q-GP-UCB with the linear kernel (Sec. 5.6).

• We use simulations implemented based on the Qiskit package to verify the empirical improvement
of our Q-GP-UCB over the classical GP-UCB and over Q-LinUCB, through a synthetic experiment
and an experiment on automated machine learning (AutoML) (Sec. 6). Notably, we have also

2

performed an experiment using a real quantum computer, in which our Q-GP-UCB still achieves a
consistent performance advantage (Fig. 4, App. J)

2 Related Work
A number of recent works have studied bandit algorithms in the quantum setting. The works of [8]
and [40] have focused on the problem of pure exploration in quantum bandits. [25] has studied a
different problem setting where the learner aims to maximize some property of an unknown quantum
state (i.e., the rewards) by sequentially selecting the observables (i.e., actions). The recent work of
[38] has introduced algorithms for quantum multi-armed bandits (MAB) and stochastic linear bandits
(SLB), and has shown that by incorporating the QMC subroutine into MAB and SLB, tight regret
upper bounds can be achieved which are better than the classical lower bounds. More recently, the
works of [23] and [41] have followed similar approaches to introduce quantum bandit algorithms
for, respectively, stochastic convex bandits and bandits with heavy-tailed reward distributions. In
addition to quantum bandits, some recent works have introduced quantum reinforcement learning
(RL) algorithms. [39] has assumed access to a generative model of the environment and proved
that their quantum RL algorithm achieves significantly better sample complexity over their classical
counterparts. More recently, [17, 43] have removed the requirement for a generative model in
quantum RL and achieved quantum speedup in terms of the regret. More comprehensive reviews of
the related works on quantum RL can be found in recent surveys (e.g., [27]). The problem setting
of our quantum BO (Sec. 3.2) is the same as many of these above-mentioned previous works on
quantum bandits [38, 41] and quantum RL [17, 39, 43]. However, to the best of our knowledge, none
of the existing works on quantum bandits (and quantum RL) is able to handle non-linear reward
functions, which we resolve in this work. Over the years, extensive efforts [7, 24, 30, 36] have been
made to design BO/kernelized bandit algorithms whose regret upper bounds are small enough to
(nearly) match the classical regret lower bound of Ω(

√
T) (ignoring additional log factors). Our work

provides an alternative route by proving that with the aid of quantum computing, it is possible to
achieve a tight regret upper bound which is significantly smaller than the classical regret lower bound.

3 Problem Setting and Background

3.1 Classical Kernelized Bandits

A BO/kernelized bandit algorithm aims to maximize a reward function f : X → R where X ⊂ Rd,
i.e., it aims to find x∗ ∈ argmaxx∈X f(x). Consistent with the previous works on BO/kernelized
bandits [9, 37], we assume that f lies in the reproducing kernel Hilbert space (RKHS) associated
with a kernel k: f ∈ Hk(X). That is, we assume that∥f∥Hk

≤ B for B > 0, in which∥·∥Hk
denotes

the RKHS norm induced by the kernel k. Note that unlike previous works on linear bandits [2], our
assumption here allows f to be non-linear w.r.t. the input x. In this work, we mainly focus on the
widely used squared exponential (SE) kernel: k(x, x′) ≜ exp(−

∥∥x− x′
∥∥2
2
/(2l2)) in which l is the

length scale. We also extend our results to the Matérn kernel in Sec. 5.7. Without loss of generality,
we assume that k(·, ·) ≤ 1. In the following, we use [t] to denote {1, . . . , t} for simplicity.

In every iteration t ∈ [T] of BO, an input xt is selected, after which a corresponding noisy observation
yt = f(xt)+ ζt is collected where ζt is a sub-Gaussian noise (e.g., bounded noise or Gaussian noise).
The inputs xt’s are sequentially selected by maximizing an acquisition function, which is calculated
based on the Gaussian process (GP) posterior distribution. Specifically, after t iterations, we use the
current history Dt ≜ {(x1, y1), . . . , (xt, yt)} to calculate the GP posterior predictive distribution at
x ∈ X : N (µt(x), σ

2
t (x)) where

µt(x) ≜ k⊤t (x)(Kt + λI)−1Yt, σ2
t (x) ≜ k(x, x)− k⊤t (x)(Kt + λI)−1kt(x), (1)

in which kt(x) ≜ [k(xτ , x)]
⊤
τ∈[t] and Yt ≜ [yxτ]

⊤
τ∈[t] are column vectors,Kt ≜ [k(xτ , xτ ′)]τ,τ ′∈[t] is

the t× t covariance matrix, and λ > 1 is a regularization parameter. Based on (1), a commonly used
acquisition function is GP-UCB [33], which selects the next query by: xt+1 = argmaxx∈X µt(x) +
ξt+1σt(x) where ξt+1 is a parameter carefully chosen to balance exploration and exploitation. The
performance of a BO/kernelized bandit algorithm is usually theoretically analyzed by deriving an
upper bound on its cumulative regret: RT =

∑T
t=1[f(x

∗)− f(xt)], and a tighter regret upper bound
is an indicator of a better theoretical convergence.

3

3.2 Quantum Bandits/BO

A quantum state |x⟩ in Hilbert space Cn can be expressed as a superposition of n basis states (e.g.
qubits) via a vector x⃗ = [x1, . . . , xn]

⊤, with |xi|2 representing the probability of being in the ith

basis state. Given two quantum states |x⟩ ∈ Cn and |y⟩ ∈ Cm, we use |x⟩|y⟩ = [x1y1, . . . , xnym]⊤

to denote their tensor product. A quantum algorithm typically works by applying unitary operators
to quantum states, and may have access to input data encoded in unitary operators called quantum
oracles (examples have been discussed in Sec. 1). We defer a more detailed introduction to quantum
computing to related works dedicated to these topics (e.g., [26]).

Our quantum BO setting follows that of the quantum bandits works in [38, 41]. In every iteration
of quantum BO, after an input x is selected, instead of observing a noisy reward as in classical
BO/bandits (Sec. 3.1), we get a chance to access a quantum unitary oracle Ox and its inverse that
encode the noisy reward distribution. Specifically, let Px denote the reward distribution, Ωx denote
the finite sample space of Px, and yx : Ωx → R denote the random reward associated with input x.
Then, Ox is formally defined as:

Ox : |0⟩ →
∑

ω∈Ωx

√
Px(ω)|ω⟩|yx(ω)⟩. (2)

Quantum mean estimation, which aims to estimate the mean of an unknown distribution with better
sample efficiency than classical algorithms, has been a widely studied problem [4, 21]. Consistent
with the works of [38, 41], we will make use of the following quantum Monte Carlo (QMC) algorithm:

Lemma 1 (Quantum Monte Carlo (QMC) [28]). Let yx : Ωx → R denote a random variable, Ωx is
equipped with probability measure Px, and the quantum unitary oracle Ox encodes Px and yx.

• Bounded Noise: If the noisy output observation satisfies yx ∈ [0, 1], then there exists a constant
C1 > 1 and a QMC algorithm QMC(Ox, ϵ, δ) which returns an estimate ŷx of E[yx] such that
P(|ŷx − E[yx]| > ϵ) ≤ δ, using at most C1

ϵ log(1/δ) queries to Ox and its inverse.
• Noise with Bounded Variance: If the variance of yx is ≤ σ2, then for ϵ < 4σ, there exists a

constant C2 > 1 and a QMC algorithm QMC(Ox, ϵ, δ) which returns an estimate ŷx s.t. P(|ŷx −
E[yx]| > ϵ) ≤ δ, using at most C2σ

ϵ log
3/2
2

(
8σ
ϵ

)
log2(log2

8σ
ϵ) log 1

δ queries to Ox and its inverse.

The quantum query complexity of a quantum algorithm is usually measured by the number of queries
to the quantum oracle [3, 38]. So, the sample complexities from Lemma 1 can be compared with
that of classical Monte Carlo (MC) estimation. In the classical setting, it can be easily shown using
concentration inequalities that MC estimation requires Õ(1/ϵ2) samples to reach a target mean
estimation error of ϵ. Therefore, the QMC algorithm (Lemma 1), which only needs Õ(1/ϵ) samples,
achieves a quadratic reduction in the required number of samples. This dramatic improvement is
crucial for the quantum speedup in terms of regrets achieved by our algorithm (Sec. 5.4).

During our Q-GP-UCB algorithm, after every input xs is selected, we will apply the QMC algorithm
from Lemma 1 with the quantum oracle Oxs to obtain an estimation ys of its reward f(xs) (line
6 of Algo. 1). Of note, the above-mentioned equivalence between a query to the quantum oracle
and a sample for classical MC mean estimation implies that a query to the quantum oracle Ox in
quantum BO/bandits is equivalent to the pulling of an arm x in classical BO/bandits. Therefore, the
cumulative regret RT of our Q-GP-UCB algorithm is defined as the regret incurred after T queries to
the quantum oracle, which makes it amenable to comparisons with the regrets of classical algorithms.

4 Quantum Bayesian Optimization
In this section, we first introduce weighted GP regression (Sec. 4.1) which will be used by our
Q-GP-UCB algorithm to calculate the acquisition function for input selection, and then describe our
Q-GP-UCB algorithm (Sec. 4.2) in detail.

4.1 Weighted GP Posterior Distribution

In contrast to standard GP-UCB [33] which uses the standard GP posterior distribution (1) to calculate
the acquisition function, our Q-GP-UCB makes use of a weighted GP posterior distribution. That
is, we assign a weight to every previous observation. Specifically, after stage s of our Q-GP-UCB
(i.e., given Ds ≜ {(xτ , yτ)}τ∈[s]), we define the weight matrix Ws ≜ diag(1/ϵ21, . . . , 1/ϵ

2
s). Ws is

4

an s× s diagonal matrix, in which the τ th diagonal element represents the weight 1/ϵ2τ given to the
τ th observation (xτ , yτ). We will set ϵτ = σ̃τ−1(xτ)/

√
λ (Sec. 4.2), i.e., ϵτ is calculated using the

weighted GP posterior standard deviation (3) (conditioned on the first τ − 1 observations) at xτ .

Define Ks ≜ [k(xτ , xτ ′)]τ,τ ′∈[s] which is the s× s-dimensional covariance matrix given the first s
observations, and define K̃s ≜W

1/2
s KsW

1/2
s which is the weighted covariance matrix. Similarly,

define ks(x) ≜ [k(x, xτ)]
⊤
τ∈[s] and k̃s(x) ≜ W

1/2
s ks(x). Denote the collection of output observa-

tions by Ys ≜ [yτ]
⊤
τ∈[s], and define Ỹs ≜ W

1/2
s Ys. With these definitions, given Ds, our weighted

GP posterior distribution at an input x ∈ X is a Gaussian distribution: N (µ̃s(x), σ̃
2
s(x)), in which

µ̃s(x) ≜ k̃⊤s (x)(K̃s + λI)−1Ỹs, σ̃2
s(x) ≜ k(x, x)− k̃⊤s (x)(K̃s + λI)−1k̃s(x). (3)

Note that the GP posterior mean µ̃s above is equivalently the solution to the following weighted
kernel ridge regression problem: µ̃s = argminf∈Hk(X)

∑s
τ=1

1
ϵ2τ
(yτ − f(xτ))

2 + λ∥f∥2Hk
. We

give a more detailed analysis of the weighted GP posterior (3) in App. A. Weighted GP regression
has also been adopted by previous works on BO such as [15]. However, our choice of the weights,
algorithmic design and theoretical analyses all require significantly novel treatments.

4.2 Q-GP-UCB Algorithm

Algorithm 1 Q-GP-UCB
1: for stage s = 1, 2, . . . do
2: xs = argmaxx∈X µ̃s−1(x) + βsσ̃s−1(x) (3).
3: ϵs = σ̃s−1(xs)/

√
λ.

4: (a) Nϵs = C1

ϵs
log(2mδ) (for bounded noise), or

(b) Nϵs = C2σ
ϵs

log
3/2
2

(
8σ
ϵs

)
log2(log2

8σ
ϵs
) log 2m

δ (for noise with variance bounded by σ2).
5: If

∑s
k=1Nϵk > T , terminate the algorithm.

6: Run the QMC(Oxs
, ϵs, δ/(2m)) algorithm to query the quantum oracle of xs for the next Nϵs

rounds, and obtain ys as an estimate of f(xs).
7: Update the weighted GP posterior (3) using (xs, ys).

Our Q-GP-UCB algorithm is presented in Algo. 1. Q-GP-UCB proceeds in stages. In stage s, we first
select the next input xs to query by maximizing the GP-UCB acquisition function calculated using the
weighted GP posterior distribution (3) (line 2 of Algo. 1). Here βs ≜ B+

√
2(γ̃s−1 + 1 + log(2/δ))

(more details in Sec. 5.3), in which δ ∈ (0, 2/e] and γ̃s−1 ≜ 1
2 log(det(I + 1

λK̃s−1)) is the weighted
information gain (more details in Sec. 5.1). Next, we calculate ϵs = σ̃s−1(xs)/

√
λ (line 3) and

Nϵs (line 4), in which Nϵs depends on the type of noise and the value of ϵs. Here m is an upper
bound on the total number m of stages which we will analyze in Sec. 5.2. Subsequently, unless
the algorithm is terminated (line 5), we run the QMC algorithm (Lemma 1) to estimate f(xs) by
querying the quantum oracle of xs for Nϵs rounds (line 6). The QMC procedure returns an estimate
ys of the reward function value f(xs), for which the estimation error is guaranteed to be bounded:
|ys − f(xs)| ≤ ϵs with probability of at least 1 − δ/(2m). Lastly, we update the weighted GP
posterior (3) using the newly collected input-output pair (xs, ys), as well as its weight 1/ϵ2s (line 7).

Of note, the value of ϵs is used for both (a) calculating the number Nϵs of queries to the quantum
oracle for xs, and (b) computing the weight 1/ϵ2s assigned to (xs, ys) in the weighted GP regression
(3) in the subsequent iterations. Regarding (a), our designs of ϵs and Nϵs = Õ(1/ϵs) have an
interesting interpretation in terms of the exploration-exploitation trade-off: In the initial stages, the
weighted GP posterior standard deviation σ̃s−1(xs) and hence ϵs are usually large, which leads to a
small number Nϵs of queries for every xs and hence allows our Q-GP-UCB to favor the exploration
of more unique inputs; in later stages, σ̃s−1(xs) and ϵs usually become smaller, which results in
large Nϵs ’s and hence causes our Q-GP-UCB to prefer the exploitation of a small number of unique
inputs. Regarding (b), assigning a larger weight 1/ϵ2s to an input xs with a smaller ϵs is reasonable,
because a smaller ϵs indicates a smaller estimation error for ys as we explained above, which makes
the observation ys more accurate and reliable for calculating the weighted GP regression (3).

Note that we have modified the original GP-UCB by querying every selected input xs multiple times,
in order to make it amenable to the integration of the QMC subroutine. The recent work of [6] has also

5

adapted BO to evaluate a small number of unique inputs while querying each of them multiple times.
It has been shown [6] that the resulting BO algorithm preserves both the theoretical guarantee (i.e.,
the regret upper bound) and empirical performance of the original BO, while significantly reducing
the computational cost. So, the findings from [6] can serve as justifications for our modification to
GP-UCB. Also note that despite this similarity, [6] still focuses on the traditional setting (i.e., their
regret upper bound is RT = O(γT

√
T)) and their regret analyses are entirely different from ours.

5 Theoretical Analysis
Throughout our analysis, we condition on the event that |f(xs) − ys| ≤ ϵs,∀s = 1, . . . ,m. This
event holds with probability of at least 1− δ/2, because we set the error probability in QMC (Lemma
1) to δ/(2m) in which m ≥ m (see Theorem 2 for details). For simplicity, we mainly focus on the
scenario of bounded noise (i.e., the observations are bounded within [0, 1], the first case of Lemma 1),
because the theoretical analyses and insights about the other scenario of noise with bounded variance
(i.e., the second case of Lemma 1) are almost identical (more details in Sec. 5.5).

5.1 Weighted Information Gain
To begin with, the following lemma (proof in App. B) gives an upper bound on the sum of the weights
in all m stages, which will be useful for upper-bounding the weighted information gain γ̃m.

Lemma 2. Choose δ ∈ (0, 2/e], then we have that
∑m

s=1 1/ϵ
2
s ≤ T 2.

Denote by γT the maximum information gain from any set of T inputs: γT ≜
max{x1,...,xT }⊂X

1
2 log det(I +

1
λKT), which is commonly used in the analysis of BO/kernelized

bandit algorithms [9, 33]. Denote by γ̃m the weighted information gain from all m selected inputs in
all stages: γ̃m ≜ 1

2 log det(I+
1
λK̃m). Note that in the definition of γ̃m, we do not take the maximum

over all sets of m inputs, so γ̃m still depends on the selected inputs Xm ≜ {x1, . . . , xm}. Also note
that {ϵ1, . . . , ϵm} are known constants conditioned on Xm. This is because the weighted GP posterior
standard deviation σ̃s−1 (3) does not depend on the output observations, so every ϵs = σ̃s−1(xs)/

√
λ

only depends on {x1, . . . , xs}. The next theorem gives an upper bound on γ̃m.

Theorem 1. (a) Given Xm ≜ {x1, . . . , xm}, the growth rate of γ̃m is the same as that of γ∑m
s=1 1/ϵ2s

.
(b) γ̃m ≤ γT 2 .

We give the complete statement of result (a) in Theorem 8 (App. C), which presents the concrete
growth rate. As stated by result (a), to obtain an upper bound on γ̃m, we simply need to firstly use
the upper bound on γT from previous works [35], and then replace the T in this upper bound by∑m

s=1 1/ϵ
2
s. Based on this, the result (b) has further upper-bounded

∑m
s=1 1/ϵ

2
s by T 2 through Lemma

2. Note that because ϵs = σ̃s−1(xs)/
√
λ ≤ 1, we have that 1/ϵ2s ≥ 1 and hence

∑m
s=1 1/ϵ

2
s ≥ m.

Therefore, our weighted information gain γ̃m has a looser upper bound than γm. This intuitively
implies that our weighted covariance matrix K̃m is expected to contain more information than the
originalKm, whose implication will be discussed again in Sec. 5.2. The proof of Theorem 1 (App. C)
has followed the analysis of the information gain from [35]. Specifically, we have leveraged a finite-
dimensional projection of the infinite-dimensional RKHS feature space, and hence upper-bounded
the information gain in terms of the tail mass of the eigenvalues of the kernel k. The proof requires
carefully tracking the impact of the weights 1/ϵ2s throughout the analysis. Importantly, our Theorem
1 and its analysis may be of wider independent interest for future works which also adopt weighted
GP regression (Sec. 4.1).

The growth rate of γT has been characterized for commonly used kernels [35]. Based on these, the
next corollary provides the growth rates of γ̃m for the linear and squared exponential (SE) kernels.

Corollary 1. For the linear and squared exponential (SE) kernels, we have that

γ̃m = O(d log
∑m

s=11/ϵ
2
s) = O(d log T) linear kernel,

γ̃m = O(logd+1∑m
s=11/ϵ

2
s) = O((log T)d+1) SE kernel.

5.2 Upper Bound on The Total Number m of Stages
The next theorem gives an upper bound on the total number of stages of our Q-GP-UCB algorithm.

6

Theorem 2. For the linear kernel, our Q-GP-UCB algorithm has at most m = O(d log T) stages.
For the SE kernel, our Q-GP-UCB algorithm has at most m = O((log T)

d+1
) stages.

Note that for the linear kernel, our upper bound on m matches that of the Q-LinUCB algorithm
from [38] (see Lemma 2 from [38]). The proof of Theorem 2 is given in App. D, and here we
give a brief sketch of the proof. For stage s, define Vs ≜ λI +

∑s
τ=1(1/ϵ

2
τ)ϕ(xτ)ϕ(xτ)

⊤, in
which ϕ(·) is the (potentially infinite-dimensional) RKHS feature mapping: k(x, x′) = ϕ(x)⊤ϕ(x′).
Intuitively, log detVs represents the amount of information contained in the first s selected inputs
{x1, . . . , xs}. As the first step in our proof, we prove that thanks to our choice of ϵs (line 3 of
Algo. 1) and our design of the weights 1/ϵ2s, the amount of information log detVs is doubled after
every stage: detVτ+1 = 2detVτ ,∀τ = 0, . . . ,m − 1. This allows us to show that m log 2 =
log(det(Vm)/ det(V0)) where V0 = λI . Next, we show that this term is also related to our weighted
information gain: log(det(Vm)/det(V0)) = 2γ̃m, which allows us to upper-bound m in terms of
γ̃m and hence in terms of

∑m
s=1 1/ϵ

2
s (see Corollary 1). This eventually allows us to derive an upper

bound on m by using the fact that the total number of iterations (i.e., queries to the quantum oracles)
is no larger than T . Therefore, the key intuition of the proof here is that as long as we gather a
sufficient amount of information in every stage, we do not need a large total number of stages.

5.3 Confidence Ellipsoid
The next theorem proves the concentration of f around the weighted GP posterior mean (3).

Theorem 3. Let η ≜ 2/T , λ ≜ 1 + η, and βs ≜ B +
√
2(γ̃s−1 + 1 + log(2/δ)). We have with

probability of at least 1− δ/2 that
|f(x)− µ̃s−1(x)| ≤ βsσ̃s−1(x), ∀s ∈ [m], x ∈ X .

The proof of Theorem 3 is presented in App. E, and here we give a brief proof sketch. Denote
by Fs−1 the σ-algebra Fs−1 = {x1, . . . , xs, ζ1, . . . , ζs−1} where ζk = yk − f(xk) is the noise.
Recall that W 1/2

s ≜ diag(1/ϵ1, . . . , 1/ϵs) (Sec. 4.1), and define ζ1:s ≜ [ζk]k∈[s]. In the first part of
the proof, we use the RKHS feature space view of the weighted GP posterior (3) (see App. A) to
upper-bound |f(x)−µ̃s−1(x)| in terms of σ̃s−1(x) and ||W 1/2

s ζ1:s||((K̃s+ηI)−1+I)−1 . Next, the most

crucial step in the proof is to upper-bound ||W 1/2
s ζ1:s||((K̃s+ηI)−1+I)−1 in terms of γ̃s by applying

the self-normalized concentration inequality from Theorem 1 of [9] to 1-sub-Gaussian noise. This
is feasible because (a) every ϵs = σ̃s−1(xs)/

√
λ is Fs−1-measurable, and (b) conditioned on Fs−1,

the scaled noise term ζs/ϵs (in W 1/2
s ζ1:s) is 1-sub-Gaussian. The statement (a) follows because ϵs

only depends on {x1, . . . , xs} as we have discussed in Sec. 5.1. The statement (b) follows since our
QMC subroutine ensures that every noise term ζk is bounded within [−ϵk, ϵk] (Sec. 4.2) because
|yk − f(xk)| ≤ ϵk (with high probability). This suggests that conditioned on Fs−1 (which makes ϵs
a known constant as discussed above), ζs/ϵs is bounded within [−1, 1] and is hence 1-sub-Gaussian.

This critical step in the proof is in fact also consistent with an interesting interpretation about our
algorithm. That is, after xs is selected in stage s, we adaptively decide the number Nϵs of queries
to the quantum oracle in order to reach the target accuracy ϵs (line 4 of Algo. 1). This ensures
that |ys − f(xs)| ≤ ϵs (with high probability), which guarantees that the noise ζs = ys − f(xs)

is (conditionally) ϵs-sub-Gaussian. Moreover, note that the vector of observations Ỹs used in the
calculation of the weighted GP posterior mean (3) is Ỹs =W

1/2
s Ys. So, from the perspective of the

weighted GP posterior (3), every noisy observation ys, and hence every noise ζs, is multiplied by
1/ϵs. So, the effective noise of the observations Ỹs used in the weighted GP posterior (i.e., ζs/ϵs) is
ϵs/ϵs = 1-sub-Gaussian. This shows the underlying intuition as to why our proof of the concentration
of the reward function f using the weighted GP regression can make use of 1-sub-Gaussian noise
(e.g., in contrast to the σ-sub-Gaussian noise used in the proof of classical GP-UCB [9]).

Our tight confidence ellipsoid around f from Theorem 3 is crucial for deriving a tight regret upper
bound for our Q-GP-UCB (Sec. 5.4). Moreover, as we will discuss in more detail in Sec. 5.6, our
proof technique for Theorem 3, interestingly, can be adopted to obtain a tighter confidence ellipsoid
for the Q-LinUCB algorithm from [38] and hence improve its regret upper bound.

5.4 Regret Upper Bound
Here we derive an upper bound on the cumulative regret of our Q-GP-UCB algorithm.

7

Theorem 4. With probability of at least 1− δ, we have that1

RT = O
(
d3/2(log T)3/2 log(d log T)

)
linear kernel,

RT = O
(
(log T)3(d+1)/2 log((log T)d+1)

)
SE kernel.

The proof of Theorem 4 is presented in App. F. The proof starts by following the standard technique
in the proof of UCB-type algorithms to show that rs = f(x∗) − f(xs) ≤ 2βsσ̃s−1(xs). Next,
importantly, our design of ϵs = σ̃s−1(xs)/

√
λ allows us to show that rs ≤ 2βsϵs

√
λ. After that, the

total regrets incurred in a stage s can be upper-bounded by Nϵs × 2βsϵs
√
λ = O(1

ϵs
log(m/δ) ×

βsϵs) = O(βs log(m/δ)). Lastly, the regret upper bound follows by summing the regrets from
all m stages. Of note, for the commonly used SE kernel, our regret upper bound is of the order
O(poly log T), which is significantly smaller than the regret lower bound of Ω(

√
T) in the classical

setting shown by [31]. This improvement over the classical fundamental limit is mostly attributed to
the use of the QMC (Lemma 1), i.e., line 6 of Algo. 1. If the QMC procedure is replaced by classical
MC estimation, then in contrast to the Nϵs = O(1/ϵs) queries by QMC, every stage would require
Nϵs = O(1/ϵ2s) queries. As a result, this would introduce an additional factor of 1/ϵs to the total
regrets in a stage s (as discussed above), which would render the derivation of our regret upper bound
(Theorem 4) invalid. This verifies that our tight regret upper bound in Theorem 4 is only achievable
with the aid of quantum computing. Our Theorem 4 is a demonstration of the immense potential of
quantum computing to dramatically improve the theoretical guarantees over the classical setting.

Importantly, when the linear kernel is used, the regret upper bound of our Q-GP-UCB is in fact better
than that of the Q-LinUCB algorithm from [38]. This improvement arises from our tight confidence
ellipsoid in Theorem 3. In Sec. 5.6, we will give a more detailed discussion of this improvement and
adopt our proof technique for Theorem 3 to improve the confidence ellipsoid for Q-LinUCB, after
which their improved regret upper bound matches that of our Q-GP-UCB with the linear kernel.

5.5 Regret Upper Bound for Noise with Bounded Variance

Here we analyze the regret of our Q-GP-UCB when the variance of the noise is bounded by σ2,
which encompasses common scenarios including σ-sub-Gaussian noises and Gaussian noises with
a variance of σ2. Consistent with the analysis of Q-LinUCB [38], in order to apply the theoretical
guarantee provided by QMC (Lemma 1) for noise with bounded variance, here we need to assume
that the noise variance is not too small, i.e., we assume that σ > 1/4. In this case of noise with
bounded variance, the following theorem gives an upper bound on the regret of our Q-GP-UCB.

Theorem 5. With probability of at least 1− δ, we have that

RT = O
(
σd3/2(log T)3/2 log(d log T)(log2 σT)

3/2 log2(log2 σT)
)

linear kernel,

RT = O
(
σ(log T)3(d+1)/2 log((log T)d+1)(log2 σT)

3/2 log2(log2 σT)
)

SE kernel.
(4)

The proof of Theorem 5 is given in App. G. Note that same as Theorem 4, the regret for the SE kernel
in Theorem 5 is also of the order O(poly log T), which is also significantly smaller than the classical
regret lower bound of Ω(

√
T) [31]. Moreover, Theorem 5 shows that for both the linear kernel and

SE kernel, the regret of our Q-GP-UCB is reduced when the noise variance σ2 becomes smaller.

5.6 Improvement to Quantum Linear UCB (Q-LinUCB)

As we have mentioned in Sec. 5.4, the regret upper bound of our Q-GP-UCB with the linear
kernel is RT = O(d3/2(log T)3/2 log(d log T)), which is better than the corresponding RT =

O(d2(log T)3/2 log(d log T)) for Q-LinUCB [38]2 by a factor of O(
√
d). This improvement can be

attributed to our tight confidence ellipsoid from Theorem 3. Here, following the general idea of the
proof of our Theorem 3, we prove a tighter confidence ellipsoid for the Q-LinUCB algorithm, i.e., we
improve Lemma 3 from the work of [38]. Here we follow the notations from [38], and we defer the
detailed notations, as well as the proof of Theorem 6 below, to App. H due to space limitation.

1We have omitted the dependency on log(1/δ) for simplicity. Refer to App. F for the full expression.
2This is the high-probability regret (rather than expected regret) from [38], which we focus on in this work.

8

Theorem 6 (Improved Confidence Ellipsoid for [38]). With probability of at least 1− δ,

θ∗ ∈ Cs = {θ ∈ Rd :
∥∥∥θ − θ̂s

∥∥∥
Vs

≤
(√√√√2d log

(
1 +

L2

λ

s∑
k=1

1

ϵ2k

)1
δ
+

√
λS
)
}, ∀s ∈ [m].

Note that the size of the confidence ellipsoid from our Theorem 6 is of the order
O(
√
d log(

∑s
k=1 1/ϵ

2
k)) = O(

√
d log T) (we have used Lemma 2 here), which improves over

the O(
√
ds) = O(

√
dm) = O(

√
d× d log T) = O(d

√
log T) from Lemma 3 of [38] by a factor of√

d. Plugging in our tighter confidence ellipsoid (Theorem 6) into the regret analysis of Q-LinUCB,
the regret upper bound for Q-LinUCB is improved to RT = O

(
d3/2 log3/2 T log(d log T)

)
(more

details at the end of App. H). This improved regret upper bound exactly matches that of our Q-GP-
UCB with the linear kernel (Theorem 4). Similar to Theorem 3, the most crucial step in the proof
of Theorem 6 is to apply the self-normalized concentration inequality from Theorem 1 of [2] to
1-sub-Gaussian noise. Again this is feasible because ϵs = σ̃s−1(xs)/

√
λ is Fs−1-measurable, and

conditioned on Fs−1, the scaled noise ζs/ϵs is 1-sub-Gaussian.

5.7 Regret Upper Bound for the Matérn Kernel

So far we have mainly focused on the linear and SE kernels in our analysis. Here we derive a regret
upper bound for our Q-GP-UCB algorithm for the Matérn kernel with smoothness parameter ν.
Theorem 7 (Matérn Kernel, Bounded Noise). With probability of at least 1− δ, we have that

RT = Õ
(
T 3d/(2ν+d)

)
.

The proof is in App. I. Note that the state-of-the-art regret upper bound for the Matérn kernel
in the classical setting is RT = O(

√
TγT) = Õ(T (ν+d)/(2ν+d)) [7, 24, 30, 36], which matches

the corresponding classical regret lower bound (up to logarithmic factors in T) [35]. Therefore,
the regret upper bound of our Q-GP-UCB for the Matérn kernel (Theorem 7) improves over the
corresponding classical regret lower bound when ν > 2d, i.e., when the reward function is sufficiently
smooth. Also note that similar to the classical GP-UCB [33] (with regret RT = O(γT

√
T) =

Õ(T (ν+3d/2)/(2ν+d))) which requires the reward function to be sufficiently smooth (i.e., ν > d/2) to
attain sub-linear regrets for the Matérn kernel, our Q-GP-UCB, as the first quantum BO algorithm,
also requires the reward function to be smooth enough (i.e., ν > d) in order to achieve a sub-linear
regret upper bound for the Matérn kernel. We leave it to future works to further improve our regret
upper bound and hence relax this requirement for smooth functions.

6 Experiments
We use the Qiskit python package to implement the QMC algorithm (Lemma 1) following the
recent work of [20]. Some experimental details are deferred to App. J due to space limitation.

Synthetic Experiment. Here we use a grid of |X | = 20 equally spaced points within [0, 1] as the
1-dimensional input domain X (d = 1), and sample a function f from a GP prior with the SE kernel.
The sampled function f is scaled so that its output is bounded within [0, 1], and then used as the
reward function in the synthetic experiments. We consider two types of noises: (a) bounded noise
(within [0, 1]) and (b) Gaussian noise, which correspond to the two types of noises in Lemma 1,
respectively. For (a) bounded noise, we follow the practice of [38] such that when an input x is
selected, we treat the function value f(x) as the probability for a Bernoulli distribution, i.e., we
observe an output of 1 with probability of f(x) and 0 otherwise. For (b) Gaussian noise, we simply
add a zero-mean Gaussian noise with variance σ2 to f(x). The results for (a) bounded noise and (b)
Gaussian noise are shown in Figs. 1 (a) and (b), respectively. The figures show that for both types
of noises, our Q-GP-UCB significantly outperforms the classical baseline of GP-UCB. Specifically,
although our Q-GP-UCB incurs larger regrets in the initial stage, it is able to leverage the accurate
observations provided by the QMC subroutine to rapidly find the global optimum. These results show
that the quantum speedup of our Q-GP-UCB in terms of the tighter regret upper bounds (Theorems 4
and 5) may also be relevant in practice. We have additionally compared with linear UCB (LinUCB)
[2] and Q-LinUCB [38], which are, respectively, the most representative classical and quantum linear
bandit algorithms. The results in Fig. 2 (App. J) show that in these experiments where the reward

9

0 2000 4000 6000 8000 10000
Iterations

0

20

40

60

Cu
m

ul
at

iv
e

Re
gr

et

GP-UCB
Q-GP-UCB

0 2000 4000 6000 8000 10000
Iterations

0

20

40

60

Cu
m

ul
at

iv
e

Re
gr

et

GP-UCB (= 0.3)
GP-UCB (= 0.4)
Q-GP-UCB (= 0.3)
Q-GP-UCB (= 0.4)

0 1000 2000 3000 4000 5000
Iterations

0

10

20

30

40

Cu
m

ul
at

iv
e

Re
gr

et

GP-UCB (= 0.01)
GP-UCB (= 0.05)
Q-GP-UCB (= 0.01)
Q-GP-UCB (= 0.05)

0 1000 2000 3000 4000 5000
Iterations

0

100

200

300

400

Cu
m

ul
at

iv
e

Re
gr

et

GP-UCB (= 0.01)
GP-UCB (= 0.05)
Q-GP-UCB (= 0.01)
Q-GP-UCB (= 0.05)
LinUCB (= 0.05)
Q-LinUCB (= 0.05)

(a) synthetic (Bernoulli) (b) synthetic (Gaussian) (c) AutoML (d) AutoML
Figure 1: Cumulative regret for synthetic experiments with (a) bounded noise and (b) Gaussian noise.
(c) Cumulative regret for the AutoML experiment; (d) additionally includes results for linear bandits.

function is non-linear, algorithms based on linear bandits severely underperform compared with
BO/kernelized bandit algorithms in both the classical and quantum settings.

AutoML Experiment. In our experiments on automated machine learning (AutoML), we use our
Q-GP-UCB algorithm to tune the hyperparameters of an SVM for a classification task. Here we
consider a Gaussian noise with a variance of σ2 since it is more practical and more commonly used
in real-world experiments. The results in Fig. 1 (c) show that our Q-GP-UCB again significantly
outperforms the classical GP-UCB. Fig. 1 (d) additionally shows the comparisons with LinUCB and
Q-LinUCB. The results again corroborate that BO/kernelized bandit algorithms are considerably
superior in real-world applications with highly non-linear reward functions in both the classical and
quantum settings. These results here further demonstrate the potential of our Q-GP-UCB to lead to
quantum speedup in practical applications.

More Realistic Experiments. We have additionally tested the performance of our Q-GP-UCB algo-
rithm after accounting for the effect of quantum noise, by incorporating into our Qiskit simulations
a noise model based on the actual performance of real IBM quantum computers. The results (Fig. 3
in App. J) show that although the addition of quantum noise slightly deteriorates the performance
of our Q-GP-UCB, it is still able to significantly outperform classical GP-UCB. Notably, we have
additionally performed an experiment using a real quantum computer (details in App. J), in which
the performance of our Q-GP-UCB, although further worsened compared to the experiment using
simulated noise, is still considerably better than classical GP-UCB (Fig. 4, App. J). Also note that
the work of [38] has not shown that Q-LinUCB outperforms LinUCB in the presence of simulated
quantum noise. Therefore, the consistently superior performances of our Q-GP-UCB over GP-UCB
with both simulated quantum noise and a real quantum computer serve as important new support for
the potential practical advantages of quantum bandit algorithms.

Discussion. In our experimental results (e.g., Fig. 1), our Q-GP-UCB usually has relatively larger
regrets in the initial stages but quickly achieves zero regret thereafter (i.e., the curve plateaus), which
has also been observed in [38] for the Q-LinUCB algorithm. This is because in the initial stages,
our Q-GP-UCB explores a smaller number of unique arms than GP-UCB. However, after the initial
exploration, our Q-GP-UCB quickly starts to perform reliable exploitation, because the accurate
reward observations achieved thanks to our QMC subroutines allow us to rapidly learn the reward
function and hence find the optimal arm.

7 Conclusion
We have introduced the first quantum BO algorithm, named Q-GP-UCB. Our Q-GP-UCB achieves a
regret upper bound of O(poly log T), which is significantly smaller than the classical regret lower
bound of Ω(

√
T). A limitation of our work is that the regret upper bound of our Q-GP-UCB:

O((log T)3(d+1)/2) (ignoring polylog factors) has a worse dependency on the input dimension d than
the regret of the classical GP-UCB: O((log T)d+1

√
T). A similar limitation is shared by Q-LinUCB,

since its regret has a dependency of O(d3/2) in contrast to the O(d) of LinUCB. It is an interesting
future work to explore potential approaches to remove this extra dependency on d. Another limitation
of our work is that for the Matérn kernel, we require the reward function to be smooth enough in
order to achieve a sub-linear regret upper bound (Sec. 5.7). So, another important future work is
to further tighten the regret upper bound of our Q-GP-UCB for the Matérn kernel when the reward
function is less smooth, as well as for other kernels encompassing non-smooth functions such as
the neural tangent kernel which has been adopted by recent works on neural bandits [13, 42, 44].
Moreover, another interesting future work is to derive regret lower bounds in our setting of quantum
kernelized bandits, which can help evaluate the tightness of our regret upper bounds.

10

Acknowledgements and Disclosure Funding

This research/project is supported by the National Research Foundation, Singapore under its AI
Singapore Programme (AISG Award No: AISG-PhD/2023-01-039J). DesCartes: this research is
supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Campus
for Research Excellence and Technological Enterprise (CREATE) programme.

References
[1] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and S. Woerner. The power of quantum

neural networks. Nature Computational Science, 1(6):403–409, 2021.
[2] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits.

In Proc. NeurIPS, volume 24, 2011.
[3] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. Quantum machine

learning. Nature, 549(7671):195–202, 2017.
[4] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and estimation.

Contemporary Mathematics, 305:53–74, 2002.
[5] S. Cakmak, R. Astudillo Marban, P. Frazier, and E. Zhou. Bayesian optimization of risk

measures. In Proc. NeurIPS, volume 33, pages 20130–20141, 2020.
[6] D. Calandriello, L. Carratino, A. Lazaric, M. Valko, and L. Rosasco. Scaling Gaussian process

optimization by evaluating a few unique candidates multiple times. In Proc. ICML, pages
2523–2541. PMLR, 2022.

[7] R. Camilleri, K. Jamieson, and J. Katz-Samuels. High-dimensional experimental design and
kernel bandits. In Proc. ICML, pages 1227–1237. PMLR, 2021.

[8] B. Casalé, G. Di Molfetta, H. Kadri, and L. Ralaivola. Quantum bandits. Quantum Machine
Intelligence, 2:1–7, 2020.

[9] S. R. Chowdhury and A. Gopalan. On kernelized multi-armed bandits. In Proc. ICML, pages
844–853, 2017.

[10] Z. Dai, B. K. H. Low, and P. Jaillet. Federated Bayesian optimization via Thompson sampling.
In Proc. NeurIPS, 2020.

[11] Z. Dai, B. K. H. Low, and P. Jaillet. Differentially private federated Bayesian optimization with
distributed exploration. In Proc. NeurIPS, volume 34, 2021.

[12] Z. Dai, Y. Shu, B. K. H. Low, and P. Jaillet. Sample-then-optimize batch neural Thompson
sampling. In Proc. NeurIPS, 2022.

[13] Z. Dai, Y. Shu, A. Verma, F. X. Fan, B. K. H. Low, and P. Jaillet. Federated neural bandits. In
Proc. ICLR, 2023.

[14] Z. Dai, H. Yu, B. K. H. Low, and P. Jaillet. Bayesian optimization meets Bayesian optimal
stopping. In Proc. ICML, pages 1496–1506, 2019.

[15] Y. Deng, X. Zhou, B. Kim, A. Tewari, A. Gupta, and N. Shroff. Weighted Gaussian process
bandits for non-stationary environments. In Proc. AISTATS, pages 6909–6932. PMLR, 2022.

[16] P. I. Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.
[17] B. Ganguly, Y. Wu, D. Wang, and V. Aggarwal. Quantum computing provides exponential

regret improvement in episodic reinforcement learning. arXiv:2302.08617, 2023.
[18] S. Garg and G. Ramakrishnan. Advances in quantum deep learning: An overview. arXiv

preprint arXiv:2005.04316, 2020.
[19] R. Garnett. Bayesian Optimization. Cambridge Univ. Press, 2022.
[20] D. Grinko, J. Gacon, C. Zoufal, and S. Woerner. Iterative quantum amplitude estimation. npj

Quantum Information, 7(1):52, 2021.
[21] L. K. Grover. A framework for fast quantum mechanical algorithms. In Proceedings of the

thirtieth annual ACM symposium on Theory of computing, pages 53–62, 1998.
[22] F. Hutter, L. Kotthoff, and J. Vanschoren. Automated machine learning: methods, systems,

challenges. Springer Nature, 2019.

11

[23] T. Li and R. Zhang. Quantum speedups of optimizing approximately convex functions with
applications to logarithmic regret stochastic convex bandits. In Proc. NeurIPS, 2022.

[24] Z. Li and J. Scarlett. Gaussian process bandit optimization with few batches. In Proc. AISTATS,
pages 92–107. PMLR, 2022.

[25] J. Lumbreras, E. Haapasalo, and M. Tomamichel. Multi-armed quantum bandits: Exploration
versus exploitation when learning properties of quantum states. Quantum, 6:749, 2022.

[26] A. Messiah. Quantum mechanics. Courier Corporation, 2014.
[27] N. Meyer, C. Ufrecht, M. Periyasamy, D. D. Scherer, A. Plinge, and C. Mutschler. A survey on

quantum reinforcement learning. arXiv:2211.03464, 2022.
[28] A. Montanaro. Quantum speedup of Monte Carlo methods. Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 471(2181):20150301, 2015.
[29] P. Rebentrost, M. Mohseni, and S. Lloyd. Quantum support vector machine for big data

classification. Physical review letters, 113(13):130503, 2014.
[30] S. Salgia, S. Vakili, and Q. Zhao. A domain-shrinking based Bayesian optimization algorithm

with order-optimal regret performance. In Proc. NeurIPS, volume 34, pages 28836–28847,
2021.

[31] J. Scarlett, I. Bogunovic, and V. Cevher. Lower bounds on regret for noisy Gaussian process
bandit optimization. In Proc. COLT, pages 1723–1742. PMLR, 2017.

[32] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the human out of
the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2016.

[33] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the
bandit setting: No regret and experimental design. In Proc. ICML, pages 1015–1022, 2010.

[34] A. Steane. Quantum computing. Reports on Progress in Physics, 61(2):117, 1998.
[35] S. Vakili, K. Khezeli, and V. Picheny. On information gain and regret bounds in Gaussian

process bandits. In Proc. AISTATS, pages 82–90. PMLR, 2021.
[36] M. Valko, N. Korda, R. Munos, I. Flaounas, and N. Cristianini. Finite-time analysis of kernelised

contextual bandits. In Proc. UAI, 2013.
[37] A. Verma, Z. Dai, and B. K. H. Low. Bayesian optimization under stochastic delayed feedback.

In Proc. ICML, pages 22145–22167. PMLR, 2022.
[38] Z. Wan, Z. Zhang, T. Li, J. Zhang, and X. Sun. Quantum multi-armed bandits and stochastic

linear bandits enjoy logarithmic regrets. In Proc. AAAI.
[39] D. Wang, A. Sundaram, R. Kothari, A. Kapoor, and M. Roetteler. Quantum algorithms for

reinforcement learning with a generative model. In Proc. ICML, pages 10916–10926. PMLR,
2021.

[40] D. Wang, X. You, T. Li, and A. M. Childs. Quantum exploration algorithms for multi-armed
bandits. In Proc. AAAI, volume 35, pages 10102–10110, 2021.

[41] Y. Wu, C. Guan, V. Aggarwal, and D. Wang. Quantum heavy-tailed bandits. arXiv:2301.09680,
2023.

[42] W. Zhang, D. Zhou, L. Li, and Q. Gu. Neural Thompson sampling. In Proc. ICLR, 2021.
[43] H. Zhong, J. Hu, Y. Xue, T. Li, and L. Wang. Provably efficient exploration in quantum

reinforcement learning with logarithmic worst-case regret. arXiv:2302.10796, 2023.
[44] D. Zhou, L. Li, and Q. Gu. Neural contextual bandits with UCB-based exploration. In Proc.

ICML, pages 11492–11502. PMLR, 2020.

12

A Analysis of the Weighted GP Posterior (3)

Here we show an alternative view of the weighted GP posterior distribution (3) in the RKHS feature
space. The notations in this section will be extensively used in the theoretical analyses in the
subsequent sections.

We denote the kernel k by k(x, x′) = ϕ(x)⊤ϕ(x′), in which ϕ(x) is the potentially infinite-
dimensional feature mapping of x in the RKHS of k. Define Φs ≜ [ϕ(x1), . . . , ϕ(xs)]

⊤ which
is an s×∞ matrix. Recall that we have defined Ws ≜ diag(1

ϵ21
, . . . , 1

ϵ2s
) which is an s× s diagonal

matrix. Define Vs ≜ λI+
∑s

τ=1
1
ϵ2τ
ϕ(xτ)ϕ(xτ)

⊤ = λI+Φ⊤
s WsΦs which is an ∞×∞ matrix, and

let V0 ≜ λI . With these notations, it can be easily verified thatKs = ΦsΦ
⊤
s = [k(xτ , xτ ′)]τ,τ ′=1,...,s,

and K̃s = W
1/2
s ΦsΦ

⊤
s W

1/2
s = W

1/2
s KsW

1/2
s . Moreover, we can also easily show that

ks(x) = Φsϕ(x) = [k(x, xτ)]τ=1,...,s, k̃s(x) =W
1/2
s Φsϕ(x) =W

1/2
s ks(x), and Ỹs =W

1/2
s Ys.

We start by deriving an alternative expression for the weighted GP posterior mean µ̃s(x). To begin
with, we have that

Φ⊤
s W

1/2
s (K̃s + λI) = Φ⊤

s W
1/2
s (W 1/2

s ΦsΦ
⊤
s W

1/2
s + λI)

= Φ⊤
s W

1/2
s W 1/2

s ΦsΦ
⊤
s W

1/2
s + λΦ⊤

s W
1/2
s

= (Φ⊤
s WsΦs + λI)Φ⊤

s W
1/2
s

= VsΦ
⊤
s W

1/2
s .

Now we multiply both sides by V −1
s on the left and by (K̃s + λI)−1 on the right, which leads to

V −1
s Φ⊤

s W
1/2
s = Φ⊤

s W
1/2
s (K̃s + λI)−1

Now we can show that
µ̃s(x) = ϕ(x)⊤V −1

s Φ⊤
s WsYs = ϕ(x)⊤Φ⊤

s W
1/2
s (K̃s + λI)−1W 1/2

s Ys

= k̃⊤s (x)(K̃s + λI)−1Ỹs.

Next, we derive an alternative expression for the weighted GP posterior variance σ̃2
s(x). To begin

with, we have that(
W−1

s +
1

λ
ΦsΦ

⊤
s

)−1

=

(
W−1/2

s

(
I +

1

λ
W 1/2

s ΦsΦ
⊤
s W

1/2
s

)
W−1/2

s

)−1

=W 1/2
s

(
I +

1

λ
W 1/2

s ΦsΦ
⊤
s W

1/2
s

)−1

W 1/2
s

= λW 1/2
s

(
λI + K̃s

)−1

W 1/2
s .

(5)

This allows us to show that
σ̃2
s(x) = λϕ(x)⊤V −1

s ϕ(x)

= λϕ(x)⊤(λI +Φ⊤
s WsΦs)

−1ϕ(x)

(a)
= λϕ(x)⊤

(
1

λ
I − 1

λ
Φ⊤

s (W
−1
s +Φs

1

λ
Φ⊤

s)
−1Φs

1

λ

)
ϕ(x)

= ϕ(x)⊤ϕ(x)− ϕ(x)⊤Φ⊤
s (W

−1
s +

1

λ
ΦsΦ

⊤
s)

−1Φs
1

λ
ϕ(x)

(b)
= ϕ(x)⊤ϕ(x)− ϕ(x)⊤Φ⊤

s W
1/2
s

(
λI + K̃s

)−1

W 1/2
s Φsϕ(x)

= k(x, x)− k̃⊤s (x)(K̃s + λI)−1k̃s(x),

in which we have used the matrix inversion lemma in step (a), and used equation (5) in step (b).

To summarize, we have derived the following alternative expressions for the weighted GP posterior
distribution (3):

µ̃s(x) = ϕ(x)⊤V −1
s Φ⊤

s WsYs = k̃⊤s (x)(K̃s + λI)−1Ỹs,

σ̃2
s(x) = λϕ(x)⊤V −1

s ϕ(x) = k(x, x)− k̃⊤s (x)(K̃s + λI)−1k̃s(x).
(6)

13

B Proof of Lemma 2

To begin with, we can lower-bound the total number of iterations (i.e., the total number of queries to
the quantum oracles) in m stages by

m∑
s=1

C1

ϵs
log(

2m

δ
) ≥

m∑
s=1

1

ϵs
≥

√√√√ m∑
s=1

1

ϵ2s
. (7)

The first inequality follows since C1 > 1 (Lemma 1) and log(2mδ) ≥ log(2δ) ≥ 1 because we have
chosen δ ∈ (0, 2/e]. Suppose that

∑m
s=1

1
ϵ2s
> T 2, then we have that

∑m
s=1

C1

ϵs
log(2mδ) > T which

is a contradiction. Therefore, we have that
m∑
s=1

1

ϵ2s
≤ T 2. (8)

C Proof of Theorem 1

Here we prove the growth rate of γ̃m, i.e., the weighted information gain. Recall that Wm =

diag
(

1
ϵ21
, 1
ϵ22
, . . . , 1

ϵ2m

)
, and γ̃m = 1

2 log det
(
I + λ−1K̃m

)
. Our proof here follows closely the

proof of Theorem 3 from the work of [35]. We will omit the subscript m as long as the context is
clear.

Denote by Km = ΦmΦ⊤
m = [k(xi, xj)]i,j=1,...,m the m × m covariance matrix, and define

K̃m =W
1/2
m ΦmΦ⊤

mW
1/2
m =W

1/2
m KmW

1/2
m . Following Theorem 1 from [35], our kernel k can be

denoted as k(x, x′) =
∑∞

τ=1 λτψτ (x)ψτ (x
′), in which {λτ}τ=1,...,∞ and {ψτ}τ=1,...,∞ represent,

respectively, the eigenvalues and eigenfunctions of the kernel k. We will make use of the projection
onto a D-dimensional RKHS (D <∞), which consists of the first D features corresponding to the
D largest eigenvalues of the kernel k. Specifically, define kP as the D-dimensional projection in
the RKHS of k, and kO corresponds to the orthogonal element such that k(·, ·) = kP (·, ·) + kO(·, ·).
That is, following Section 3.2 from the work of [35], define

kP (x, x
′) =

D∑
τ=1

λτψτ (x)ψτ (x
′). (9)

We define KP ≜ [kP (xi, xj)]i,j=1,...,m and KO ≜ [kO(xi, xj)]i,j=1,...,m. Similarly, define K̃P =

W
1/2
m KPW

1/2
m and K̃O = W

1/2
m KOW

1/2
m . This implies that Km = KP + KO and that K̃m =

K̃P + K̃O.

Here to be consistent with [35], we use Im to denote the m×m-dimensional identity matrix. Denote
by Ĩ(ym; f) the information gain about the function f from the observations ym = [y1, . . . , ym].
We have that

Ĩ(ym; f) =
1

2
log det

(
Im +

1

λ
K̃m

)
=

1

2
log det

(
Im +

1

λ

(
K̃P + K̃O

))

=
1

2
log det

(Im +
1

λ
K̃P

)(
Im +

1

λ

(
Im +

1

λ
K̃P

)−1

K̃O

)
=

1

2
log det

(
Im +

1

λ
K̃P

)
+

1

2
log det

(
Im +

1

λ

(
Im +

1

λ
K̃P

)−1

K̃O

)
.

(10)

The last line follows because det (AB) = det (A) det (B). In the following, we will separately
upper-bound the two terms in (10).

14

We start by upper-bounding the first term in equation (10). Denote by ψD(x) the D-dimensional
feature vector corresponding to the first D principle features of the kernel k (i.e., the features
corresponding to the largest D eigenvalues). Define Ψm,D ≜ [ψD(x1), . . . ,ψD(xm)]⊤ which is an
m×D matrix. Denote by ΛD = diag(λ1, . . . , λD) a D×D-diagonal matrix whose diagonal entries
consist of the largest D eigenvalues of the kernel k in descending order. With this definition, we have
that KP = Ψm,DΛDΨ⊤

m,D and

K̃P =W 1/2
m Ψm,DΛDΨ⊤

m,DW
1/2
m . (11)

Also define the gram matrix:

G̃m = Λ
1/2
D Ψ⊤

m,DWmΨm,DΛ
1/2
D . (12)

Based on these definitions, we have that

det

(
ID +

1

λ
G̃m

)
= det

(
Im +

1

λ
K̃P

)
, (13)

which follows from the Weinstein–Aronszajn identity: det
(
ID +AA⊤) = det

(
Im +A⊤A

)
for

a D ×m matrix A, and we have plugged in A = 1√
λ
Λ
1/2
D Ψ⊤

m,DW
1/2
m . In addition, the following

inequality will also be useful in the subsequent proof:∥∥∥Λ1/2
D ψD(x)

∥∥∥2
2
=

D∑
τ=1

λτψ
2
τ (x) = kP (x, x) ≤ k(x, x) ≤ 1, (14)

in which we have made use of the definition of kP from (9), and our assumption (w.l.o.g.) that
k(x, x′) ≤ 1,∀x, x′ (Sec. 3.1). In the following, we will denote the trace of a matrix A by Tr(A).
Next, we have that

Tr
(
ID +

1

λ
G̃m

)
= D +

1

λ
Tr
(
G̃m

)
= D +

1

λ
Tr
(
Λ
1/2
D Ψ⊤

m,DWmΨm,DΛ
1/2
D

)
(a)
= D +

1

λ
Tr

Λ
1/2
D

 m∑
s=1

1

ϵ2s
ψD(xs)ψ

⊤
D(xs)

Λ
1/2
D

= D +

1

λ
Tr

 m∑
s=1

1

ϵ2s
Λ
1/2
D ψD(xs)ψ

⊤
D(xs)Λ

1/2
D

= D +

1

λ

m∑
s=1

1

ϵ2s
Tr
(
Λ
1/2
D ψD(xs)ψ

⊤
D(xs)Λ

1/2
D

)
(b)
= D +

1

λ

m∑
s=1

1

ϵ2s
Tr
(
ψ⊤

D(xs)Λ
1/2
D Λ

1/2
D ψD(xs)

)
= D +

1

λ

m∑
s=1

1

ϵ2s
ψ⊤

D(xs)Λ
1/2
D Λ

1/2
D ψD(xs)

= D +
1

λ

m∑
s=1

1

ϵ2s

∥∥∥Λ1/2
D ψD(xs)

∥∥∥2
2

(c)

≤ D +
1

λ

m∑
s=1

1

ϵ2s
,

(15)

in which (a) follows because Ψ⊤
m,DWmΨm,D =

∑m
s=1

1
ϵ2s
ψD(xs)ψ

⊤
D(xs), (b) has made use of the

cyclic property of the trace operator, and (c) follows from (14) above.

15

Also note that for a positive definite matrix P ∈ Rn×n, we have that

log det(P) ≤ n log
Tr(P)
n

. (16)

Therefore, we have that

log det

(
Im +

1

λ
K̃P

)
= log det

(
ID +

1

λ
G̃m

)

≤ D log
D + 1

λ

∑m
s=1

1
ϵ2s

D
= D log

1 +
1

λD

m∑
s=1

1

ϵ2s

 .

(17)

The first equality follows from (13), and the inequality results from (16) and (15).

Now we upper-bound the second term in equation (10). To begin with, we have that

Tr

((
Im +

1

λ
K̃P

)−1

K̃O

)
≤ Tr

(
K̃O

)
, (18)

which is because the matrix
(
Im + 1

λK̃P

)−1

is positive semi-definite (PSD) whose largest eigenvalue
is upper-bounded by 1, and Tr(P1P2) ≤ λP1Tr(P2) where P1 and P2 are PSD matrices and λP1 is
the largest eigenvalue of P1. Next, define δD ≜

∑∞
τ=D+1 λτψ

2 where |ϕτ (x)| ≤ ψ,∀x, τ . Then we
immediately have that kO(x, x′) =

∑∞
τ=D+1 λτϕτ (x)ϕτ (x

′) ≤ δD,∀x, x′. Therefore, we have that

Tr
(
K̃O

)
=

m∑
s=1

1

ϵ2s
kO(xs, xs) ≤ δD

m∑
s=1

1

ϵ2s
. (19)

As a result, we have that

Tr

(
Im +

1

λ

(
Im +

1

λ
K̃P

)−1

K̃O

)
≤ m+

1

λ
δD

m∑
s=1

1

ϵ2s
, (20)

in which the inequality follows from (18) and (19).

Next, again making use of equation (16) and incorporating the upper bound on the trace from (20),
we have that

log det

(
Im +

1

λ

(
Im +

1

λ
K̃P

)−1

K̃O

)
≤ m log

m+ 1
λδD

∑m
s=1

1
ϵ2s

m

≤ m log

1 +
δD
mλ

m∑
s=1

1

ϵ2s

≤ m× δD

mλ

m∑
s=1

1

ϵ2s

≤

 m∑
s=1

1

ϵ2s

 δD
λ
.

(21)

in which the second last step is because log(1 + z) ≤ z,∀z ∈ R.

Finally, combining the upper bounds from 17 and 21, equation (10) can be upper-bounded by

Ĩ(ym; f) ≤ 1

2
D log

1 +

∑m
s=1

1
ϵ2s

Dλ

+
1

2

 m∑
s=1

1

ϵ2s

 δD
λ
. (22)

Therefore, we have that

γ̃m = Ĩ(ym; f) =
1

2
log det

(
Im +

1

λ
K̃m

)
≤ 1

2
D log(1 +

∑m
s=1

1
ϵ2s

Dλ
) +

1

2

 m∑
s=1

1

ϵ2s

 δD
λ
. (23)

16

Also recall that for the standard unweighted maximum information gain γT , we have that [35]

γT =
1

2
log det

(
IT +

1

λ
KT

)
≤ 1

2
D log(1 +

T

Dλ
) +

1

2
T
δD
λ
. (24)

Therefore, the upper bound on the weighted information gain γ̃m is obtained by replacing the T from
the upper bound on standard maximum information gain γT by

∑m
s=1

1
ϵ2s

. This is formalized by the
following Theorem.

Theorem 8. [More formal statement of Theorem 1 (a)] Given Xm ≜ {x1, . . . , xm}, then we have
that

γ̃m ≤ 1

2
D log(1 +

∑m
s=1

1
ϵ2s

Dλ
) +

1

2

 m∑
s=1

1

ϵ2s

 δD
λ
,

γ∑m
s=1 1/ϵ2s

≤ 1

2
D log(1 +

∑m
s=1

1
ϵ2s

Dλ
) +

1

2

 m∑
s=1

1

ϵ2s

 δD
λ
.

Lastly, note that it has been shown that γT = O(d log T) for the linear kernel and γT =
O((log T)d+1) for the SE kernel, Therefore, plugging in Lemma 2, which allows us to upper-bound∑m

s=1 1/ϵ
2
s by T 2, leads to Corollary 1.

D Proof of Theorem 2

Our proof here follows the outline of the proof of Lemma 2 from the work of [38]. To begin with,
we show that det(Vτ+1) = 2det(Vτ),∀τ = 0, . . . ,m− 1, i.e., the amount of collected information is
doubled after every stage.

det(Vτ+1) = det

λI + τ+1∑
j=1

1

ϵ2j
ϕ(xj)ϕ(xj)

⊤

= det

λI + τ∑
j=1

1

ϵ2j
ϕ(xj)ϕ(xj)

⊤ +
1

ϵ2τ+1

ϕ(xτ+1)ϕ(xτ+1)
⊤

= det

(
Vτ +

1

ϵ2τ+1

ϕ(xτ+1)ϕ(xτ+1)
⊤

)

= det

V 1/2
τ

(
I +

1

ϵ2τ+1

V −1/2
τ ϕ(xτ+1)ϕ(xτ+1)

⊤V −1/2
τ

)
V 1/2
τ

= det (Vτ) det

(
I +

1

ϵ2τ+1

V −1/2
τ ϕ(xτ+1)ϕ(xτ+1)

⊤V −1/2
τ

)
(a)
= det (Vτ)

(
1 +

1

ϵ2τ+1

ϕ(xτ+1)
⊤V −1/2

τ V −1/2
τ ϕ(xτ+1)

)

= det (Vτ)

(
1 +

1

ϵ2τ+1

∥∥ϕ(xτ+1)
∥∥2
V −1
τ

)
(b)
= det (Vτ)

(
1 +

σ̃2
τ (xτ+1)/λ

σ̃2
τ (xτ+1)/λ

)
= 2det (Vτ) .

(25)

Step (a) has made use of the matrix determinant lemma: det(I + ab⊤) = det(I + a⊤b), and (b)
follows from the expression of the weighted GP posterior variance (6) and our choice of ϵτ+1 =

17

σ̃τ (xτ+1)/
√
λ (line 3 of Algo. 1). An immediate consequence of (25) is that det(Vm) = 2mdet(V0).

Recall we have defined earlier that V0 = λI (App. A).

Recall that following the notations of App. A, we have that Vm = λI +Φ⊤
mWmΦm. Next, we can

also show that

log
det(Vm)

det(V0)
= log

det(λI +Φ⊤
mWmΦm)

det(λI)

= log det
(
I +

1

λ
(Φ⊤

mW
1/2
m)(W 1/2

m Φm)

)
(a)
= log det

(
I +

1

λ
W 1/2

m ΦmΦ⊤
mW

1/2
m

)
= log det

(
I +

1

λ
K̃m

)
= 2γ̃m,

(26)

in which step (a) has again made use of the Weinstein–Aronszajn identity (similar to (13)), and the
last two equalities have simply plugged in the expressions for K̃s =W

1/2
s ΦsΦ

⊤
s W

1/2
s (App. A), and

γ̃m = 1
2 log det(I + λ−1K̃m) (Sec. 5.1).

According to Corollary 1, for the linear kernel, we have that there exists an absolute constant C > 0

such that γ̃m ≤ Cd log
(∑m

s=1
1
ϵ2s

)
. Combining equations (25) and (26), we can show that

m log 2 = log
det(Vm)

det(V0)
= 2γ̃m ≤ 2Cd log

 m∑
s=1

1

ϵ2s

 . (27)

This allows us to show that
m∑
s=1

1

ϵ2s
≥ (2m)1/(2Cd). (28)

Note that in every stage s, we query the quantum oracle for C1

ϵs
log(2mδ) times, in which C1 > 1,

δ ∈ (0, 2/e] and m is an upper bound on the total number of stages. An immediate consequence is
that log(2mδ) ≥ log(2δ) ≥ 1. Therefore, the total number of iterations can be analyzed as

m∑
s=1

C1

ϵs
log(

2m

δ
) ≥

m∑
s=1

1

ϵs
≥

√√√√ m∑
s=1

1

ϵ2s
≥
√
(2m)1/(2Cd). (29)

Now we derive an upper bound on m by contradiction. Suppose m > 2Cd
log 2 log T , this immediately

implies that √
(2m)1/(2Cd)) > T. (30)

This equation, combined with (29), implies that
∑m

s=1
C1

ϵs
log(2mδ) > T , which is a contradiction.

Therefore, we have that

m ≤ 2

log 2
Cd log T = O(d log T). (31)

That is, for the linear kernel, our algorithm runs for at most O(d log T) stages, which matches the
upper bound on the total number of stages for the quantum linear UCB (Q-LinUCB) algorithm, as
proved by Lemma 2 from the work of [38].

Next, for the SE kernel, Corollary 1 shows that there exists an absolute constant C > 0 such that
γ̃m ≤ C logd+1

(∑m
s=1

1
ϵ2s

)
. Again combining equations (25) and (26), we can show that

m log 2 = log
det(Vm)

det(V0)
= 2γ̃m ≤ 2C logd+1

 m∑
s=1

1

ϵ2s

 . (32)

18

This allows us to show that

m∑
s=1

1

ϵ2s
≥ exp

((
m log 2

2C

)1/(d+1)
)
. (33)

Now again we derive an upper bound on m by contradiction. Suppose m > 2C
log 2 (2 log T)

d+1, then
this implies that √√√√exp

((
m log 2

2C

)1/(d+1)
)
> T. (34)

This, combined with (29), implies that
∑m

s=1
C1

ϵs
log(2mδ) > T which is a contradiction. Therefore

m ≤ 2C

log 2
(2 log T)

d+1
= O

(
(log T)

d+1
)

(35)

for the SE kernel. This completes the proof.

E Proof of Theorem 3

Our proof here follows closely the proof of Theorem 2 from [9]. Denote by ζs the observation noise
for the observation in stage s: ys = f(xs) + ζs. Define ζ1:s ≜ [ζ1, . . . , ζs]

⊤ which is an s× 1 vector.
Denote by Fs the σ-algebra: Fs = {x1, . . . , xs+1, ζ1, . . . , ζs}. With this definition, we have that
xs is Fs−1-measurable, and ζs is Fs-measurable. Note that we have used ϕ(·) to denote the RKHS
feature map of the kernel k: k(x, x′) = ϕ(x)⊤ϕ(x′), and here we let ϕ(x) = k(x, ·). Then using
the reproducing property, we have that f(x) = ⟨ϕ(x), f⟩k = ϕ(x)⊤f , in which the inner product
denotes the inner product induced by the RKHS of k.

To begin with, we have that

Φ⊤
s W

1/2
s (W 1/2

s ΦsΦ
⊤
s W

1/2
s + λI)−1 = (Φ⊤

s WsΦs + λI)−1Φ⊤
s W

1/2
s , (36)

which follows from noting that (Φ⊤
s WsΦs + λI)Φ⊤

s W
1/2
s = Φ⊤

s W
1/2
s (W

1/2
s ΦsΦ

⊤
s W

1/2
s + λI),

and then multiplying by (Φ⊤
s WsΦs + λI)−1 on the left and by (W

1/2
s ΦsΦ

⊤
s W

1/2
s + λI)−1 on the

right.

Now let fs ≜ [f(xk)]
⊤
k=1,...,s = Φsf which is an s × 1-dimensional vector, and f̃s ≜ W

1/2
s fs =

W
1/2
s Φsf . Next, we can prove that

|f(x)− k̃⊤s (x)(K̃s + λI)−1f̃s| = |f(x)− ϕ(x)⊤Φ⊤
s W

1/2
s

(
W 1/2

s ΦsΦ
⊤
s W

1/2
s + λI

)−1

f̃s|
(a)
= |f(x)− ϕ(x)⊤(Φ⊤

s WsΦs + λI)−1Φ⊤
s W

1/2
s W 1/2

s Φsf |
= |ϕ(x)⊤f − ϕ(x)⊤(Φ⊤

s WsΦs + λI)−1Φ⊤
s WsΦsf |

= |λϕ(x)⊤(Φ⊤
s WsΦs + λI)−1f |

≤∥f∥k
∥∥∥λϕ(x)⊤(Φ⊤

s WsΦs + λI)−1
∥∥∥
k

=∥f∥k
√
λϕ(x)⊤(Φ⊤

s WsΦs + λI)−1λI(Φ⊤
s WsΦs + λI)−1ϕ(x)

≤∥f∥k
√
λϕ(x)⊤(Φ⊤

s WsΦs + λI)−1(λI +Φ⊤
s WsΦs)(Φ⊤

s WsΦs + λI)−1ϕ(x)

≤∥f∥k
√
λϕ(x)⊤(Φ⊤

s WsΦs + λI)−1ϕ(x)

(b)

≤ Bσ̃s(x),

(37)

19

in which step (a) has made use of (36), and step (b) follows from our assumption that∥f∥k ≤ B
(Sec. 3.1) and the expression for the weighted GP posterior variance (6). Next, we have that

|k̃⊤s (x)(K̃s + λI)−1W 1/2
s ζ1:s| = |ϕ(x)⊤Φ⊤

s W
1/2
s

(
W 1/2

s ΦsΦ
⊤
s W

1/2
s + λI

)−1

W 1/2
s ζ1:s|

(a)
= |ϕ(x)⊤(Φ⊤

s WsΦs + λI)−1Φ⊤
s W

1/2
s W 1/2

s ζ1:s|
= |ϕ(x)⊤(Φ⊤

s WsΦs + λI)−1Φ⊤
s Wsζ1:s|

≤
∥∥∥(Φ⊤

s WsΦs + λI)−1/2ϕ(x)
∥∥∥
k

∥∥∥(Φ⊤
s WsΦs + λI)−1/2Φ⊤

s Wsζ1:s

∥∥∥
k

=
√
ϕ(x)⊤(Φ⊤

s WsΦs + λI)−1ϕ(x)
√
(Φ⊤

s Wsζ1:s)⊤(Φ⊤
s WsΦs + λI)−1Φ⊤

s Wsζ1:s

=
1√
λ
σ̃s(x)

√
ζ⊤1:sWsΦs(Φ⊤

s WsΦs + λI)−1Φ⊤
s W

1/2
s W

1/2
s ζ1:s

(b)
=

1√
λ
σ̃s(x)

√
ζ⊤1:sWsΦsΦ⊤

s W
1/2
s (W

1/2
s ΦsΦ⊤

s W
1/2
s + λI)−1W

1/2
s ζ1:s

=
1√
λ
σ̃s(x)

√
ζ⊤1:sW

1/2
s W

1/2
s ΦsΦ⊤

s W
1/2
s (W

1/2
s ΦsΦ⊤

s W
1/2
s + λI)−1W

1/2
s ζ1:s

=
1√
λ
σ̃s(x)

√
ζ⊤1:sW

1/2
s K̃s(K̃s + λI)−1W

1/2
s ζ1:s,

(38)

in which (a) and (b) follow from (36). Since µ̃s(x) = k̃⊤s (x)(K̃s+λI)
−1Ỹs and Ỹs = f̃s+W

1/2
s ζ1:s,

then the two equations above combine to tell us that

|f(x)− µ̃s(x)| ≤ σ̃s(x)

(
B +

1√
λ

√
ζ⊤1:sW

1/2
s K̃s(K̃s + λI)−1W

1/2
s ζ1:s

)
≤ σ̃s(x)

(
B +

√
ζ⊤1:sW

1/2
s K̃s(K̃s + λI)−1W

1/2
s ζ1:s

)
,

(39)

in which the second inequality follows since λ = 1 + η > 1. Again following [9], we apply a
few more steps of transformations. Note that for an invertible K, we have that K(K + I)−1 =(
(K + I)K−1

)−1
=
(
I +K−1

)−1
. Substituting K = K̃s + ηI , we have that

(K̃s + ηI)(K̃s + (η + 1)I)−1 =
(
I + (K̃s + ηI)−1

)−1

.

Next, we have that

ζ⊤1:sW
1/2
s K̃s(K̃s + λI)−1W 1/2

s ζ1:s ≤ ζ⊤1:sW
1/2
s (K̃s + ηI)(K̃s + (1 + η)I)−1W 1/2

s ζ1:s

= ζ⊤1:sW
1/2
s

(
(K̃s + ηI)−1 + I

)−1

W 1/2
s ζ1:s

=
∥∥∥W 1/2

s ζ1:s

∥∥∥2
((K̃s+ηI)−1+I)−1

.

This allows us to further re-write (39) as

|f(x)− µ̃s(x)| ≤ σ̃s(x)

(
B +

∥∥∥W 1/2
s ζ1:s

∥∥∥
((K̃s+ηI)−1+I)−1

)
. (40)

Recall that Ws = diag
(

1
ϵ21
, 1
ϵ22
, . . . , 1

ϵ2s

)
, therefore, W 1/2

s ζ1:s = [ζk
1
ϵk
]⊤k=1,...,s. Of note, since

we have that |f(xs) − ys| ≤ ϵs,∀s = 1, . . . ,m (with high probability, refer to the beginning of
Sec. 5), so, the noise ζs = ys − f(xs) is bounded: |ζs| ≤ ϵs,∀s = 1, . . . ,m. In other words, ζs is
ϵs-sub-Gaussian.

To begin with, note that ϵk is Fk−1-measurable. This can be seen recursively: conditioned on {x1},
ϵ1 = σ̃0(x1)/

√
λ is a deterministic constant (i.e., predictable); conditioned on {x1, x2}, σ̃1(·) is

predictable because it depends on x1 and ϵ1 (via the weight 1
ϵ21

), and hence ϵ2 = σ̃1(x2)/
√
λ is pre-

dictable conditioned on {x1, x2}. By induction, conditioned on {x1, . . . , xk}, ϵk = σ̃k−1(xk)/(
√
λ)

is predictable. Therefore, ϵk is Fk−1-measurable, because Fk−1 = {x1, . . . , xk, ζ1, . . . , ζk−1}.

20

Next, note that since ζk is Fk-measurable, we have that ζk
ϵk

is Fk-measurable. Moreover, conditioned
on Fk−1 (i.e., ϵk is a predictable), ζk

ϵk
is 1-sub-Gaussian, because ζk is ϵk-sub-Gaussian as discussed

above. To summarize, we have that every element ζk
ϵk

of this noise vector W 1/2
s ζ1:s is (a) Fk-

measurable and (b) 1-sub-Gaussian conditionally on Fk−1. Therefore, we can apply Theorem 1 of
[9] to 1-sub-Gaussian noise, to show that

∥∥∥W 1/2
s ζ1:s

∥∥∥
((K̃s+ηI)−1+I)−1

≤

√√√√
2 log

√
det((1 + η)I + K̃s)

δ
(41)

with probability of at least 1 − δ. When applying Theorem 1 of [9], we have also replaced the
original unweighted covariance matrix Ks by the corresponding weighted covariance matrix K̃s =

W
1/2
s KsW

1/2
s . This is possible because every ϵk is Fk−1-measurable. More concretely, in the

proof of Theorem 1 of [9], when defining the super-martingale {Mt}t which is conditioned on F∞,
we only need to replace the covariance matrix Kt (for the multivariate Gaussian distribution of
h(x1), . . . , h(xt)) by K̃t = W

1/2
t KtW

1/2
t , because both the original Kt and our K̃t only require

conditioning on {x1, . . . , xt}.

Combining the two equations above allows us to show that

|f(x)− µ̃s(x)| ≤ σ̃s(x)
(
B +

√√√√
2 log

√
det((1 + η)I + K̃s)

δ

) (42)

with probability of ≥ 1− δ. Next, we can further upper-bound the log determinant term:

log det
(
(1 + η)I + K̃s

) (a)

≤ s log(1 + η) + log det

(
I +

1

1 + η
K̃s

)
(b)

≤ log det

(
I +

1

λ
K̃s

)
+ sη

(c)
= 2γ̃s + sη

(d)

≤ 2γ̃s + 2,

(43)

in which (a) follows since det(AB) = det(A) det(B) and det(cA) ≤ cs det(A) for a scalar c and
an s× s-matrix A, (b) has made use of log(1 + z) ≤ z, (c) has made use of the definition of γs, and
(d) follows because η = 2/T and s ≤ T . This eventually allows us to show that

|f(x)− µ̃s(x)| ≤ σ̃s(x)
(
B +

√√√√
2 log

√
det((1 + η)I + K̃s)

δ

)
≤ σ̃s(x)

(
B +

√
2(γ̃s + 1 + log(1/δ))

)
,

(44)

Of note, although the work of [15] has also adopted weighted GP regression in a similar way to our
(3), our proof technique here cannot be applied in their analysis. This is because the work of [15]
has chosen the weight to be ws = η−s for η ∈ (0, 1) and hence Ws = diag[w1, . . . , ws]. Therefore,
every element of the scaled noise vector W 1/2

s ζ1:s (i.e., ζk
√
wk) is not guaranteed to be sub-Gaussian.

As a result, this makes it infeasible for them to apply the self-normalizing concentration inequality
from Theorem 1 of [9], i.e., our (41) above does not hold in their case. The work of [15] has come up
with other novel proof techniques suited to their setting. Therefore, our proof here only works in our
problem setting of quantum BO.

21

F Proof of Theorem 4

To begin with, we can show that

rs = f(x∗)− f(xs)
(a)

≤ µ̃s−1(x
∗) + βsσ̃s−1(x

∗)− f(xs)

(b)

≤ µ̃s−1(xs) + βsσ̃s−1(xs)− f(xs)

(c)

≤ 2βsσ̃s−1(xs)
(d)
= 2βsϵs

√
λ,

(45)

in which (a) and (c) follow from Theorem 3, (b) results from our policy for selecting xs (line 2 of
Algo. 1), and (d) follows from our design of ϵs = σ̃s−1(xs)/

√
λ (line 3 of Algo. 1). As a result, the

total regret in stage s can be upper bounded by:

C1

ϵs
log

2m

δ
× 2βsϵs

√
λ = 2C1βs

√
λ log

2m

δ
. (46)

Then an upper bound on the total cumulative regret can be obtained by summing up the regrets from
all m stages:

RT ≤
m∑
s=1

2C1βs
√
λ log

2m

δ
≤ m2C1βm

√
λ log

2m

δ
= O

(
mβm log

m

δ

)
. (47)

For the linear kernel, recall from Theorem 3 and Corollary 1 that βm = O(
√
γ̃m−1 + log(1/δ)) =

O(
√
d log T + log(1/δ)). Also recall that Theorem 2 tells us that m ≤ m = O(d log T). Therefore,

for the linear kernel,

RT = O
(
d log T

√
d log T + log(1/δ) log

d log T

δ

)
= O

(
d3/2 log3/2 T log(d log T)

)
, (48)

in which we have ignored the dependency on log(1/δ) in the second step to get a cleaner expression.

For the SE kernel, recall from Theorem 3 and Corollary 1 that βm = O(
√
γ̃m−1 + log(1/δ)) =

O(
√
(log T)d+1 + log(1/δ)). Also recall that Theorem 2 tells us that m ≤ m = O((log T)d+1).

Therefore, for the linear kernel,

RT = O

(
(log T)d+1

√
(log T)d+1 + log(1/δ) log

(log T)d+1

δ

)
= O

(
(log T)3(d+1)/2 log((log T)d+1)

)
,

(49)

in which we have again ignored the dependency on log(1/δ) to obtain a cleaner expression.

The error probability of δ results from (a) conditioning on the event that |f(xs) − ys| ≤ ϵs,∀s =
1, . . . ,m which holds with probability of at least 1− δ/2, and (b) Theorem 3 which also holds with
probability of at least 1− δ/2.

G Proof of Theorem 5

Consistent with the analysis of Q-LinUCB [38], in order to apply the theoretical guarantee provided
by QMC (Lemma 1) for noise with bounded variance, here we need to assume that the noise variance
is not too small: We assume that σ > 1/3. We have chosen the value of 1/3 just for convenience, in
fact, any σ larger than 1/4 can be used in our analysis here because these different values will only
alter the constants in our regret upper bound which are absorbed by the O.

Note that ϵs = σ̃s−1(xs)/
√
λ ≤ 1, which follows because σ̃2

s−1(xs) ≤ 1 (which can be easily
seen from (3) and our assumption that k(x, x′) ≤ 1) and λ > 1. As a result of the assumption of
σ > 1/3, we have that σ > 1/3 > 2

√
2/8. This, combined with ϵs ≤ 1, allows us to show that

log
3/2
2

(
8σ
ϵs

)
≥ 23/4 and that log2(log2

8σ
ϵs
) ≥ 1/2.

22

Next, we derive an upper bound on
∑m

s=1
1
ϵ2s

which is analogous to (8). Note that in the case of a
noise with bounded variance, the number of queries to the quantum oracle in stage s is given by
Nϵs = C2σ

ϵs
log

3/2
2

(
8σ
ϵs

)
log2(log2

8σ
ϵs
) log 2m

δ with C2 > 1. As a result, we have the following
inequality which is in a similar spirit to (7)

m∑
s=1

C2σ

ϵs
log

3/2
2

(
8σ

ϵs

)
log2(log2

8σ

ϵs
) log

2m

δ
≥

m∑
s=1

1

3

1

ϵs
23/42−1 ≥ 1

3× 21/4

√√√√ m∑
s=1

1

ϵ2s
(50)

Now suppose that
∑m

s=1
1
ϵ2s
> 9

√
2T 2, then we have that

∑m
s=1Nϵs > T which is a contradiction.

Therefore, we have that
m∑
s=1

1

ϵ2s
≤ 9

√
2T 2. (51)

Next, note that Theorem 1 is unaffected since its proof does not depend on the noise. Moreover,
Corollary 1 also stays the same because it has only made use of (8) which gives an upper bound on∑m

s=1 1/ϵ
2
s, and compared to (8), its counterpart (51) in the analysis here only introduces an extra

constant factor which is absorbed by the bit O notation. Similarly, Theorem 2 is also unaltered for a
similar reason, i.e., only an extra constant factor of 3× 21/4 will be introduced to the right hand side
of (30) and (34), which is absorbed by the big O notation.

Theorem 3 is also unaltered since its proof does not depend on the type of noise. In particular, the
key underlying reason why it is unaffected is because for both types of noise, given a particular ϵs,
we choose the corresponding number Nϵs of queries (to the quantum oracle) depending on the type
of noise so that the error guarantee of |ys − f(xs)| ≤ ϵs is satisfied. This allows us to make use of
the self-normalizing bound from [9] for 1-sub-Gaussian noise.

Lastly, we need to modify the proof of Theorem 4. To begin with, the total regret from stage s can
now be bounded as
C2σ

ϵs
log

3/2
2

(
8σ

ϵs

)
log2(log2

8σ

ϵs
) log

2m

δ
× 2βsϵs

√
λ = O

(
σ log

3/2
2 (

σ

ϵs
) log2(log2

σ

ϵs
) log

m

δ
βs
)
.

(52)
Note that every 1/ϵs is upper-bounded by 1/ϵs ≤ 3× 21/4T = O(T) which can be easily inferred
using (51). So, the total regret can be upper-bounded as

RT = O

 m∑
s=1

σ log
3/2
2 (

σ

ϵs
) log2(log2

σ

ϵs
) log

m

δ
βs

= O

(
mβm log

m

δ
σ log

3/2
2 (σT) log2

(
log2(σT)

))
.

(53)

As a result, for the linear kernel for which m ≤ m = O(d log T) (Theorem 2) and βm =√
γ̃m−1 + log(1/δ) = O(

√
d log T + log(1/δ)) (Theorem 3 and Corollary 1),

RT = O
(
d log T

√
d log T + log(1/δ) log

d log T

δ
σ log

3/2
2 (σT) log2(log2(σT))

)
= O

(
σd3/2 log3/2 T log(d log T) log

3/2
2 (σT) log2(log2(σT))

)
,

(54)

in which we have ignored all log(1/δ) factors for a cleaner expression.

For the SE kernel for which m ≤ m = O(logd+1 T) (Theorem 2) and βm =
√
γ̃m−1 + log(1/δ) =

O(
√
logd+1 T + log(1/δ)) (Theorem 3 and Corollary 1),

RT = O

(
logd+1 T

√
logd+1 T + log(1/δ) log

logd+1 T

δ
σ log

3/2
2 (σT) log2(log2 σT)

)
= O

(
σ(log T)3(d+1)/2 log((log T)d+1) log

3/2
2 (σT) log2(log2 σT)

)
,

(55)

in which we have again ignored all log(1/δ) factors for a cleaner expression.

23

H Proof of Theorem 6

Our proof here follows closely the proof of Theorem 2 from the work of [2]. For consistency, in our
proof here, we follow the notations from [38] and [2].

Since we focus on linear bandits here, we assume that the reward function is linear with a groundtruth
d-dimensional parameter vector θ∗: f(x) = x⊤θ∗,∀x. Again following [2] and [38] as well as
many other works on linear bandits, we assume that∥θ∗∥2 ≤ S, and∥x∥2 ≤ L,∀x. We use Xs to
denote Xs ≜ [x1, . . . , xs]

⊤ which is an s × d matrix, and denote Ys ≜ [y1, . . . , ys]
⊤ which is an

s×1-dimensional vector of observations. We use ζ1:s ≜ [ζ1, . . . , ζs]
⊤ to denote the s×1-dimensional

vector of noise. These notations allow us to write Ys = Xsθ
∗+ζ1:s. We denote Vs ≜ X⊤

s WsXs+λI .
Following [38], we use θ̂s to denote the MLE estimate of the parameter θ∗ given the observations
after the first s stages: θ̂s = V −1

s X⊤
s WsYs. Given these notations, we firstly have that

θ̂s = (X⊤
s WsXs + λI)−1X⊤

s Ws(Xsθ
∗ + ζ1:s)

= (X⊤
s WsXs + λI)−1X⊤

s Wsζ1:s + (X⊤
s WsXs + λI)−1(X⊤

s WsXs + λI)θ∗

− λ(X⊤
s WsXs + λI)−1θ∗

= (X⊤
s WsXs + λI)−1X⊤

s Wsζ1:s + θ∗ − λ(X⊤
s WsXs + λI)−1θ∗.

(56)

Therefore,

x⊤θ̂s − x⊤θ∗ = x⊤(X⊤
s WsXs + λI)−1X⊤

s Wsζ1:s − λx⊤(X⊤
s WsXs + λI)−1θ∗

= ⟨x,X⊤
s Wsζ1:s⟩V −1

s
− λ⟨x, θ∗⟩V −1

s
.

(57)

This allows us to use the Cauchy-Schwarz inequality to show that

|x⊤θ̂s − x⊤θ∗| ≤∥x∥V −1
s

(∥∥∥X⊤
s Wsζ1:s

∥∥∥
V −1
s

+ λ∥θ∗∥V −1
s

)
≤∥x∥V −1

s

(∥∥∥X⊤
s Wsζ1:s

∥∥∥
V −1
s

+
√
λ∥θ∗∥2

)
.

(58)

The last inequality follows because∥θ∗∥2V −1
s

≤ 1
λmin(Vs)

∥θ∗∥22 ≤ 1
λ∥θ

∗∥22. Note that X⊤
s Wsζ1:s =∑s

k=1
1
ϵ2k
ζkxk.

Next, we make use of the self-normalized concentration inequality from Theorem 1 of [2]. Specifically,
we will use { ζs

ϵs
}∞s=1 as to replace the stochastic process {ζs}∞s=1 (i.e., representing the noise, {ηs}∞s=1

according to the notations from [2]), and use { 1
ϵs
xs}∞s=1 to replace the vector-valued stochastic

process {xs}∞s=1 (i.e., representing the sequence of inputs). Now we explain why this is feasible.

Similar to the proof of Theorem 3, we again denote the observation noise as ζs: ys = f(xs) + ζs,
and define Fs as the σ-algebra Fs = σ(x1, x2, . . . , xs+1, ζ1, ζ2, . . . , ζs). Similarly, an immediate
consequence is that xs is Fs−1-measurable, and ζs is Fs-measurable. Following a similar analysis
to that used in the proof of Theorem 3 allows us to show that ϵk is Fk−1-measurable (i.e., ϵk can
be predicted based on Fk−1). Therefore, we have that 1

ϵk
xk is Fk−1-measurable (i.e., 1

ϵk
xk can be

predicted based on Fk−1) and that ζk
ϵk

is Fk-measurable. Moreover, conditioned on Fk−1, ζk
ϵk

is 1-sub-
Gaussian. This is because the QMC subroutine guarantees that |yk − f(xk)| ≤ ϵk,∀k = 1, . . . ,m
(with high probability), which means that the absolute value of the noise ζk = yk − f(xk) is
upper-bounded by ϵk: |ζk| ≤ ϵk. Therefore, conditioned on Fk−1, ζk

ϵk
is 1-sub-Gaussian.

Given that these conditions are satisfied, we can apply the self-normalized concentration inequality
from Theorem 1 of [2] to { ζs

ϵs
}∞s=1 and { 1

ϵs
xs}∞s=1 with (following the notations from Theorem 1 of

[2])

Vs = V +

s∑
k=1

(
1

ϵk
xk

)(
1

ϵk
x⊤k

)
= λI +

s∑
k=1

1

ϵ2k
xkx

⊤
k ,

Ss =

s∑
k=1

ζk
ϵk

(
1

ϵk
xk

)
=

s∑
k=1

1

ϵ2k
ζkxk,

(59)

24

in which we have used V = λI . This allows us to show that

∥Ss∥V −1
s

=
∥∥∥X⊤

s Wsζ1:s

∥∥∥
V −1
s

≤

√√√√2 log

(
det(Vs)1/2 det(λI)−1/2

δ

)
(60)

which holds with probability of at least 1 − δ. Next, again making use of the trace-determinant
inequality from (16) and using the aforementioned assumption that∥x∥2 ≤ L, we can show that
det(Vs) ≤ (λ + L2

d

∑s
k=1

1
ϵ2k
)d. Also note that det(λI) = λd. As a result, we can further upper-

bound the equation above by:

∥∥∥X⊤
s Wsζ1:s

∥∥∥
V −1
s

≤

√√√√√√2 log

√

(λ+ L2

d

∑s
k=1

1
ϵ2k
)d

λd
1

δ

=

√√√√√√√2 log

√√√√√1 +

L2

dλ

s∑
k=1

1

ϵ2k

d

1

δ

≤

√
2d log

1 + L2

λ

∑s
k=1

1
ϵ2k

δ
,

(61)

in which we have used d ≥ 1 in the last step to get a cleaner expression.

Therefore, we can re-write (58) as

|x⊤θ̂s − x⊤θ∗| ≤∥x∥V −1
s

√
2d log

1 + L2

λ

∑s
k=1

1
ϵ2k

δ
+

√
λS

 , ∀x, s, (62)

in which we have also used the above-mentioned assumption of∥θ∗∥2 ≤ S. Now again following [2],
we plug in x = Vs(θ̂s − θ∗), which gives us

∥∥∥θ̂s − θ∗
∥∥∥2
Vs

≤
∥∥∥Vs(θ̂s − θ∗)

∥∥∥
V −1
s

√
2d log

1 + L2

λ

∑s
k=1

1
ϵ2k

δ
+
√
λS

=
∥∥∥θ̂s − θ∗

∥∥∥
Vs

√

2d log
1 + L2

λ

∑s
k=1

1
ϵ2k

δ
+

√
λS

 .

(63)

Therefore, we have that∥∥∥θ̂s − θ∗
∥∥∥
Vs

≤

√
2d log

1 + L2

λ

∑s
k=1

1
ϵ2k

δ
+

√
λS

 . (64)

This completes the proof of Theorem 6.

Now we briefly show how the improved confidence ellipsoid from our Theorem 6 leads to an improved
regret upper bound for Q-LinUCB. Here we follow the proof of Theorem 3 from [38], and hence
defer the detailed explanations of some of the steps to the proof there. To begin with, we have that

f(x∗)− f(xs) = (x∗ − xs)
⊤θ∗

≤ ϵs

(∥∥∥θ̃s − θ̂s−1

∥∥∥
Vs−1

+
∥∥∥θ̂s−1 − θ∗

∥∥∥
Vs−1

)
≤ 2ϵs ×

(√
2d log

1 + L2T 2/λ

δ
+

√
λS

)
= O

(
ϵs
√
d log T

)
.

(65)

25

Here for simplicity, we have upper-bounded
∑s

k=1(1/ϵ
2
k) by T 2 (Lemma 2) in the second inequality,

and have omitted the dependency on log(1/δ).

Then the total regrets in stage s can be upper-bounded by

C1

ϵs
log

2m

δ
×O

(
ϵs
√
d log T

)
= O

(√
d log T log

m

δ

)
(66)

Plugging in our tighter confidence ellipsoid (Theorem 6) into the regret analysis of QLinUCB, we
have that the regret upper bound of QLinUCB can be analyzed as

RT = O(

m∑
s=1

√
d log T log(

m

δ
))

= O(m
√
d log T log(

m

δ
))

= O(d log T
√
d log(T) log(d log T))

= O
(
d3/2(log T)3/2 log(d log T)

)
,

(67)

which gives the tighter regret upper bound for Q-LinUCB that we have discussed in the main text
(Sec. 5.6).

I Regret Upper Bound for the Matérn Kernel (Proof of Theorem 7)

In this section, we modify our analysis to derive a regret upper bound for the Matérn kernel. We
focus on bounded noise here (i.e., the first scenario in Lemma 1), since the analysis for noise with
bounded variance (i.e., the second scenario in Lemma 1) is similar and follows from the analysis of
App. G. In our analysis here, for simplicity, we ignore the logarithmic factors.

To begin with, note that Theorem 1 is not kernel-specific and hence still holds in our analysis here. It
has been shown that for the Matérn kernel, the upper bound on the standard maximum information
gain is γT = Õ(T

d
2ν+d) [35]. Therefore, similar to our Corollary 1, for the Matérn kernel, we can

use Theorem 1 to show that

γ̃m = Õ

 m∑

s=1

1

ϵ2s

 d
2ν+d

 = Õ
(
T

2d
2ν+d

)
. (68)

Next, we modify the proof of our Theorem 2 to derive the corresponding upper bound on the total
number of stages for the Matérn kernel, i.e., we discuss here how we modify the proof of Theorem 2

in App. D. To begin with, (68) suggests that there exists a C > 0 such that γ̃m ≤ C
(∑m

s=1
1
ϵ2s

) d
2ν+d

.
Different from our analysis for the linear and SE kernels in App. D (i.e., (27) and (32)), the absolute
constant C here also contains logarithmic factors. Similar to (27), we can show that

m log 2 = log
det(Vm)

det(V0)
= 2γ̃m ≤ 2C

 m∑
s=1

1

ϵ2s

 d
2ν+d

. (69)

This naturally leads to
m∑
s=1

1

ϵ2s
≥
(
m
log 2

2C

) 2ν+d
d

, (70)

which is analogous to (28). Next, similar to (29), the total number of iterations can be analyzed as

m∑
s=1

C1

ϵs
log(

2m

δ
) ≥

m∑
s=1

1

ϵs
≥

√√√√ m∑
s=1

1

ϵ2s
≥

√(
m
log 2

2C

) 2ν+d
d

. (71)

26

Now suppose m > T
2d

2ν+d 2C
log 2 , then this implies that√(

m
log 2

2C

) 2ν+d
d

> T. (72)

This equation, combined with (71), suggests that
∑m

s=1
C1

ϵs
log(2mδ) > T , which is a contradiction.

Therefore, we have that

m ≤ T
2d

2ν+d
2C

log 2
= Õ

(
T

2d
2ν+d

)
. (73)

Next, note that our confidence ellipsoid in Theorem 3 does not depend on the choice of the kernel
and hence also holds for the Matérn kernel.

Lastly, we can modify the proof of Theorem 4 (App. F). Specifically, we can adopt the result from
(47): RT ≤ O

(
mβm log m

δ

)
. For the Matérn kernel, Theorem 3 and (68) allow us to show that

βm = Õ(
√
γ̃m−1) = Õ(

√
T

2d
2ν+d) = Õ(T

d
2ν+d). Combining this with (73) allows us to show that

for the Matérn kernel,
RT = Õ

(
T

2d
2ν+dT

d
2ν+d

)
= Õ

(
T

3d
2ν+d

)
. (74)

This completes the proof of Theorem 7.

J More Experimental Details, and Experiment on Real Quantum Computer

In our experiments, when implementing both the classical GP-UCB and our Q-GP-UCB algo-
rithms, we use random Fourier features (RFF) approximation to approximate the kernel: k(x, x′) ≈
ϕ̃(x)⊤ϕ̃(x′). As a result, we can implement the weighted GP posterior following (6) as discussed
in App. A, in which the M -dimensional (M < ∞) random features ϕ̃(·) are used to replace the
infinite-dimensional RKHS features ϕ(·). We have used M = 100 random features in the synthetic
experiment and M = 200 in the AutoML experiment. As we have mentioned in the main paper
(Sec. 6), we have implemented the QMC algorithm from the recent work of [20] using the Qiskit
python package. We have used 6 qubits for the Gaussian noise and 1 qubits for the Bernoulli noise.
For each experiment, we perform multiple independent trials (10 trials for the synthetic experi-
ment and 5 trials for the AutoML experiment) and have plotted the resulting mean and standard
error as the solid lines and error bars in each figure, respectively. For our Q-GP-UCB, we choose
βs = 1 + log s,∀s ≥ 1 following the order given by the theoretical value of βs (Theorem 3). For
classical GP-UCB, we tried different approaches to setting βs: βs = 1+ log s, βs =

√
2 and βs = 1,

all of which are commonly adopted practices in BO; we found that βs =
√
2 and βs = 1 have led to

the best performances for GP-UCB in, respectively, the synthetic and AutoML experiments.

For the synthetic experiment, some important experimental details have been discussed in Sec. 6. The
reward function f used in the synthetic experiment is sampled from a GP with the SE kernel with
a length scale of 0.1. In the AutoML experiment, an SVM is used for diabetes diagnosis. That is,
we adopt the diabetes diagnosis dataset which can be found at https://www.kaggle.com/uciml/
pima-indians-diabetes-database, which is under the CC0 license. The task involves using 8
features to predict whether the patient had diabetes or not, which constitutes a two-class classification
problem. We use 70% of the dataset as the training set and the remaining dataset as the validation
set. We aim to tune two hyperparameters of the SVM: the penalty parameter and the RBF kernel
parameter, both within the range of [10−4, 1]. For simplicity, for each of the two hyperparameters,
we discretize its domain into 5 points with equal spacing. This results in a domain with |X | = 25.
Here we adopt the SE kernel: k(x, x′) ≜ σ2

0 exp(−
∥∥x− x′

∥∥2
2
/(2l2)) with σ2

0 = 0.5. Since we have
implemented our algorithms (both classical GP-UCB and our Q-GP-UCB) using RFF approximation
as discussed above, we performed a grid search for the length scale l within {0.1, 0.2, . . . , 1} for
both GP-UCB and Q-GP-UCB when generating the random features. We found that l = 1.0 leads to
the best performance for GP-UCB and l = 0.2 works the best for Q-GP-UCB. This is likely because
for our Q-GP-UCB, the effective noise is much smaller (thanks to the accurate estimation by the
QMC algorithm), which allows us to use a smaller length scale (which can model more complicated
functions) to accurately model the reward function.

27

https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/uciml/pima-indians-diabetes-database

0 2000 4000 6000 8000 10000
Iterations

0

2000

4000

6000

8000

10000

Cu
m

ul
at

iv
e

Re
gr

et

GP-UCB
Q-GP-UCB
LinUCB
Q-LinUCB

0 2000 4000 6000 8000 10000
Iterations

0

2000

4000

6000

8000

10000

Cu
m

ul
at

iv
e

Re
gr

et

GP-UCB (= 0.3)
GP-UCB (= 0.4)
Q-GP-UCB (= 0.3)
Q-GP-UCB (= 0.4)
LinUCB (= 0.4)
Q-LinUCB (= 0.4)

(a) synthetic, Bernoulli noise (b) synthetic, Gaussian noise

Figure 2: Cumulative regret for the synthetic experiment with (a) Bernoulli noise and (b) Gaussian
noise, with the additional comparisons with LinUCB and Q-LinUCB.

0 2000 4000 6000 8000 10000
Iterations

0

20

40

60

Cu
m

ul
at

iv
e

Re
gr

et

GP-UCB
Q-GP-UCB
Q-GP-UCB (simulated quantum noise)

0 2000 4000 6000 8000 10000
Iterations

0

20

40

60
Cu

m
ul

at
iv

e
Re

gr
et

GP-UCB (= 0.3)
GP-UCB (= 0.4)
Q-GP-UCB (= 0.3)
Q-GP-UCB (= 0.4)
Q-GP-UCB (= 0.3, simulated quantum noise)
Q-GP-UCB (= 0.4, simulated quantum noise)

0 1000 2000 3000 4000 5000
Iterations

0

10

20

30

40

Cu
m

ul
at

iv
e

Re
gr

et

GP-UCB (= 0.01)
GP-UCB (= 0.05)
Q-GP-UCB (= 0.01)
Q-GP-UCB (= 0.05)
Q-GP-UCB (= 0.01, simulated quantum noise)
Q-GP-UCB (= 0.05, simulated quantum noise)

(a) synthetic, Bernoulli noise (a) synthetic, Gaussian noise (c) AutoML

Figure 3: Cumulative regret for (a) the synthetic experiment with Bernoulli noise, (b) the synthetic
experiment with Gaussian noise, and (c) the AutoML experiment, with the additional comparisons
with our Q-GP-UCB algorithm after considering quantum noise.

All our experiments are run on a computer with Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz, with
64 CPUs. No GPUs are needed.

More Experimental Results. Fig. 2 additionally shows the cumulative regret for the LinUCB
and Q-LinUCB algorithms in the synthetic experiment. Consistent with the results in Fig. 1 (d) in
the main paper (Sec. 6) which has included the results for LinUCB and Q-LinUCB in the AutoML
experiment, here LinUCB and QLinUCB again underperform significantly in Fig. 2 for both types of
noises. These results further verify that in realistic experiments with non-linear reward functions,
algorithms based on linear bandits are significantly outperformed by those based on BO/kernelized
bandits. Fig. 3 additionally shows the results of our Q-LinUCB after considering quantum noise. As
we have discussed in the main paper (Sec. 6), the results show that the quantum noise leads to slightly
worse performances for our Q-GP-UCB, yet they are still able to significantly outperform classical
GP-UCB.

Results Using A Real Quantum Computer. Here we additionally perform an experiment using a
real quantum computer. Specifically, we ran our QMC subroutine on a real IBM quantum computer
based on superconducting qubit technology (7 qubit, Falcon r5.11H processor) through the IBM
Quantum cloud service. We ran our synthetic experiment with Gaussian noise on the system for only
1 trial (instead of 10 as in other simulations) due to time and resource constraints. The results in
Fig. 4 show that although the performance of our Q-GP-UCB on real quantum computers is worse
than those obtained without quantum noise and with simulated quantum noise, our Q-GP-UCB run on
real quantum computers is still able to significantly outperform classical GP-UCB. This experiment
provides a further demonstration for the potential of our Q-GP-UCB algorithm to lead to quantum
speedup real BO applications.

28

0 2000 4000 6000 8000 10000
Iterations

0

20

40

60

Cu
m

ul
at

iv
e

Re
gr

et

GP-UCB (= 0.4)
Q-GP-UCB (= 0.4)
Q-GP-UCB (= 0.4, simulated quantum noise)
Q-GP-UCB (= 0.4, real quantum computer)

Figure 4: Results using a real IBM quantum computer. Cumulative regret for the synthetic
experiment with Gaussian noise with σ = 0.4.

29

	Introduction
	Related Work
	Problem Setting and Background
	Classical Kernelized Bandits
	Quantum Bandits/BO

	Quantum Bayesian Optimization
	Weighted GP Posterior Distribution
	Q-GP-UCB Algorithm

	Theoretical Analysis
	Weighted Information Gain
	Upper Bound on The Total Number m of Stages
	Confidence Ellipsoid
	Regret Upper Bound
	Regret Upper Bound for Noise with Bounded Variance
	Improvement to Quantum Linear UCB (Q-LinUCB)
	Regret Upper Bound for the Matérn Kernel

	Experiments
	Conclusion
	Analysis of the Weighted GP Posterior (3)
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Regret Upper Bound for the Matérn Kernel (Proof of Theorem 7)
	More Experimental Details, and Experiment on Real Quantum Computer

