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Abstract

Automated hyperparameter optimization of machine learning (ML) models,

referred to as AutoML, has been a challenging problem for practitioners, mainly

due to the high computational cost of training modern ML models and the lack

of gradient information with respect to the model hyperparameters. To this end,

the black-box optimization method of Bayesian optimization (BO) has become

a prominent method for optimizing the hyperparameters of ML models, which

can be attributed to its impressive sample efficiency and theoretical convergence

guarantee. Despite recent advances, there are still important scenarios where

we can further improve the sample efficiency of BO for AutoML by exploiting

naturally available auxiliary information, or extend the applicability of BO to

other ML tasks. This thesis identifies five such important scenarios and, for each

of them, proposes a novel BO algorithm that is both theoretically grounded and

practically effective.

Firstly, many ML models require an iterative training process, which requires

every hyperparameter evaluation during BO to run for a certain number of

training epochs. As a result, the auxiliary observations from intermediate training

epochs can be exploited to early-stop the evaluations of those unpromising

hyperparameter configurations to save resource. We propose the BO with

Bayesian optimal stopping (BO-BOS) algorithm, which incorporates BOS into

BO in order to improve the epoch efficiency of BO using a principled optimal

stopping mechanism. BO-BOS preserves the asymptotic no-regret property of
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BO with our specified setting of BOS parameters which is amenable to an elegant

interpretation in terms of the exploration-exploitation trade-off, and performs

competitively in a number of AutoML experiments.

Secondly, the widely celebrated federated learning (FL) setting requires

first-order optimization techniques, and is hence unable to handle zeroth-order

optimization tasks such as hyperparameter optimization. We extend BO into the

FL setting (FBO) and derive the federated Thompson sampling (FTS) algorithm, to

improve the efficiency of BO in the FL setting by employing auxiliary information

from other agents. FTS tackles a number of major challenges faced by FBO in a

principled way: FTS uses random Fourier features approximation to derive the

parameters to be communicated in order to avoid sharing the raw data, adopts the

Thompson sampling algorithm which reduces the number of parameters to be

exchanged, and is robust against heterogeneous agents due to a robust theoretical

convergence guarantee.

Thirdly, the above-mentioned FTS algorithm, unfortunately, is not equipped

with a rigorous privacy guarantee, which is an important consideration in FL.

To this end, we integrate differential privacy (DP) into FTS through a general

framework for adding DP to iterative algorithms. Moreover, we leverage the

ability of this general DP framework to handle different parameter vectors, as

well as the technique of local modeling for BO, to further improve the utility of

our algorithm through distributed exploration (DE). The resulting DP-FTS-DE

algorithm is able to improve an agent’s sample efficiency by exploiting auxiliary

information from other agents, while rigorously hiding its participation in the

algorithm. DP-FTS-DE is amenable to a number of interesting theoretical insights

regarding the privacy-utility trade-off, and achieves competitive utilities with

strong privacy guarantees in real-world experiments.

Fourthly, when BO is used for hyperparameter optimization using a dataset, we

often have access to previous completed hyperparameter optimization tasks using

ix
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other potentially related datasets. This prompts the question as to whether we can

leverage these previous completed tasks to improve the efficiency of the current

BO task through meta-learning, while ensuring its robustness against dissimilar

tasks. We introduce a scalable, principled and robust meta-BO algorithm called

robust meta-Gaussian process-upper confidence bound (RM-GP-UCB). We show

that RM-GP-UCB is asymptotically no-regret even when all previous tasks are

dissimilar to the current task, and is amenable to a principled method to learn the

weights assigned to the individual previous tasks through regret minimization via

online learning. RM-GP-UCB achieves effective performances in a wide range

of real-world experiments.

Lastly, many ML tasks such as adversarial ML can be modeled as repeated

games between boundedly rational, self-interested agents with unknown, complex,

and costly-to-evaluate payoff functions. We introduce a recursive reasoning

formalism of BO, called Recursive Reasoning-Based BO (R2-B2), which extends

the applicability of BO to provide efficient strategies for players in this type of

game. Under certain conditions, using R2-B2 to reason at one level higher than

the other agents achieves faster asymptotic convergence to no regret than without

using recursive reasoning. R2-B2 performs effectively in practice in adversarial

ML and multi-agent reinforcement learning experiments.
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Chapter 1

Introduction

1.1 Background and Motivation

In recent years, machine learning (ML), especially deep learning (DL), has

demonstrated unprecedented levels of performances in various applications such

as image recognition, natural language processing, complex board games, among

other (LeCun et al., 2015; Silver et al., 2016). However, a considerable challenge

repeatedly faced by ML practitioners is the choice of model hyperparamters,

which have been found to have significant impacts on the performances of

ML models (Shahriari et al., 2016). A major difficulty in optimizing the

hyperparameters of ML models results from the massive computational cost of

training modern ML models such as deep neural networks (DNN), which makes

manual hyperparameter tuning infeasible. This therefore calls for automated

hyperparameter optimization and has given rise to the widely celebrated field

of automated machine learning (AutoML) (Hutter et al., 2019). Moreover, the

lack of gradient information with respect to the model hyperparameters also

exacerbates the difficulty of automated hyperparameter optimization since it

precludes the use of gradient-based optimization methods.

To this end, Bayesian optimization (BO) has recently become a prominent
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method for automated hyperparameter optimization mainly because (a) it has

repeatedly demonstrated impressive sample efficiency, and (b) it is a zeroth-

order black-box optimization method which does not require access to gradient

information (Shahriari et al., 2016; Snoek et al., 2012). BO uses a Gaussian

process (GP) as a surrogate to model the objective function, and sequentially

selects input locations to query by trading-off exploration of the input domain

and exploitation of the information collected so far. From the theoretical

perspective, some classes of BO algorithms, such as GP-upper confidence bound

(GP-UCB) (Srinivas et al., 2010) and Thompson sampling (TS) (Chowdhury

and Gopalan, 2017), have been shown to enjoy strong theoretical performance

guarantees, which facilitates the development of AutoML methods that are both

theoretically principled and practically effective. Of note, the generality of BO

as a sample-efficient black-box optimization method has allowed its application

to extend beyond AutoML and into many other interesting areas. For example,

BO has also been successfully applied in the automated design of black-box

adversarial attacks for adversarial ML (Ru et al., 2020), and in many real-world

experimental design problems such as material design (Frazier and Wang, 2016),

molecule design (Korovina et al., 2020), design of chemical experiments (Burger

et al., 2020), etc.

Despite significant progresses, there are still important scenarios where we

can further improve the sample efficiency of BO for AutoML by exploiting naturally

available auxiliary information, or extend the applicability of BO to other ML

tasks. We identify here five such important scenarios:

(a) The evaluation of every hyperparameter configuration usually requires an

iterative training process (e.g., stochastic gradient descent); therefore, when

BO is used for hyperparameter optimization, we may exploit the auxiliary

information during training to early-stop some unpromising hyperparameter

evaluations to improve the epoch efficiency of BO.
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(b) Current federated learning (FL) algorithms rely on first-order optimization

techniques and are hence unable to handle zeroth-order optimization tasks

such as hyperparameter tuning; therefore, BO might be extended to the FL

setting (i.e., the FBO setting) to achieve faster hyperparameter optimization

by collaborating with other agents, i.e., by exploiting auxiliary observations

from other agents.

(c) In some applications of FBO, the auxiliary observations from other agents

contain highly sensitive information; as a result, when exploiting these

auxiliary observations to achieve a higher sample efficiency for BO, a

rigorous guarantee on the privacy of the individual agents is required.

(d) When BO is used for hyperparameter optimization using a dataset, we often

have access to previous completed optimization tasks using potentially

related datasets; this begs the question as to whether we can leverage these

previous optimization tasks to improve the efficiency of the current BO

task through meta-learning.

(e) Some ML tasks can be modeled as repeated games with unknown, complex

and costly-to-evaluate payoff functions, for example, adversarial ML can

be modeled as a repeated game between an attacker and a defender; in

these games, it is unclear whether BO, as a sample-efficient black-box

optimization method, can be applied to derive efficient strategies for the

players.

Scenarios (a-d) represent opportunities to further improve the sample efficiency of

BO for AutoML by making use of naturally available side information (auxiliary

observations obtainable at reasonable costs from (a) intermediate training epochs,

(b-c) other agents and (d) previous tasks, respectively), whereas scenario (e)

offers the potential for new applications of BO in other important ML tasks. This

brings up a natural and important research question:

3
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Can we design practical BO algorithms with theoretical performance guaran-

tee for these important scenarios, to further improve the sample efficiency of BO

for AutoML and extend the applicability of BO to other ML tasks?

We answer this question affirmatively in this thesis by introducing novel BO

algorithms that are both theoretically principled and practically effective for each

of these five scenarios.

Interestingly, our novel BO algorithms for these five scenarios span both the

single-agent and multi-agent settings (Fig. 1.1). Specifically, as illustrated in

Fig. 1.1, scenarios (a) and (d) correspond to the single-agent setting where an agent

attempts to use its own auxiliary information (from intermediate training epochs

and its previous tasks, respectively) to accelerate BO. The multi-agent setting

encompasses scenarios (b), (c) and (e): In scenarios (b) and (c), multiple agents

collaborate to improve their sample efficiency while considering important issues

such as privacy and communication; in scenario (e), every agent is self-interested

and attempts to achieve a high payoff in a game. Of note, beyond AutoML and

ML tasks, our proposed algorithms for both single-agent and multi-agent settings

can also find other interesting applications. For example, in the single-agent

setting, our algorithms for scenarios (a) and (d) can also be applied to precision

agriculture where BO can be used to optimize the growing conditions for crops,

to early-stop those evaluated conditions that are unlikely to yield satisfactory

outcomes (scenario (a)), or to accelerate the current BO task by leveraging

previous tasks using other types of crops (scenario (d)). In the multi-agent setting

with collaborative agents, when multiple hospitals use BO to select the patients

to perform a medical test, our algorithms for scenarios (b) and (c) can be adopted

to improve the efficiency of patient selection by allowing every hospital to exploit

the information from the other hospitals without compromising the privacy of

patients. On the other hand, self-interested agents in multi-agent systems (e.g.,

autonomous vehicles or robots) can employ our algorithm for scenario (e) to
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Bayesian Optimization with Early Stopping

scenario (a), Chapter 4

Federated Bayesian Optimization

scenario (b), Chapter 5

Differentially Private Federated Bayesian Optimization

scenario (c), Chapter 6

Robust Meta-Bayesian Optimization

scenario (d), Chapter 7

Bayesian Optimization with Recursive Reasoning

scenario (e), Chapter 8

Sample-efficient Bayesian Optimization

Single-agent Multi-agent

AutoML

Other ML

Applications

Collaborative Agents

Self-interested Agents

Figure 1.1: Overview of the five works in this thesis.
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derive efficient strategies in the system.

Fig. 1.1 gives an overview of the five works in this thesis, categorized by

whether they focus on AutoML or other ML applications, and by whether they

are developed for the single-agent or multi-agent setting. In the next section, we

outline our contributions in this thesis by providing a brief summary of each of

these five works.

1.2 Contributions

Bayesian Optimization with Early Stopping (Dai et al., 2019). Many ML

models require running an iterative training procedure for a certain number

of epochs (e.g., stochastic gradient descent for DNN), which makes certain

information during the training process available (e.g., the validation accuracy

after each epoch). This motivates the question as to whether we can exploit these

information to improve the epoch efficiency of BO algorithms by early-stopping

model training under those hyperparameter settings that will end up under-

performing. This work (Chapter 4) proposes to unify BO (specifically, GP-UCB)

with Bayesian optimal stopping (BO-BOS) (Powell and Ryzhov, 2012) to boost

the epoch efficiency of BO. To achieve this, while GP-UCB is sample-efficient in

the number of function evaluations, BOS complements it with epoch efficiency for

each function evaluation by providing a principled optimal stopping mechanism

for early stopping. BO-BOS preserves the asymptotic no-regret performance

of GP-UCB using our specified choice of BOS parameters that is amenable to

an elegant interpretation in terms of the exploration-exploitation trade-off. We

demonstrate the competitive performance of BO-BOS in hyperparameter tuning

of ML models, and showcase its generality by applying it to two interesting

applications of policy search for reinforcement learning (RL) and feature selection.

Federated Bayesian Optimization (Dai et al., 2020b). The massive
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computational capability of edge devices such as mobile phones, coupled with

privacy concerns, has led to immense recent interest in federated learning

(FL) (McMahan et al., 2017), which focuses on collaborative training of DNN

via first-order optimization techniques. However, some common ML tasks such

as hyperparameter tuning of DNN lack access to gradients and thus require

zeroth-order optimization (black-box optimization). This hints at the considerable

potential of extending BO to the FL setting (which we refer to as the FBO setting),

to allow agents to collaborate in these black-box optimization tasks. In this work

(Chapter 5), we introduce the federated Thompson sampling (FTS) algorithm,

which overcomes a number of key challenges of FBO and FL in a principled way:

We (a) use random Fourier features (Rahimi and Recht, 2007) to approximate

the Gaussian process surrogate model used in BO which naturally produces

the parameters to be exchanged between agents and hence avoids the sharing

of raw data, (b) design FTS based on Thompson sampling (Thompson, 1933)

which significantly reduces the number of parameters to be exchanged, and (c)

provide a theoretical convergence guarantee that is robust against heterogeneous

agents which is a major challenge in FL and FBO. We empirically demonstrate

the effectiveness of FTS in terms of communication efficiency, computational

efficiency and practical performance.

Differentially Private Federated Bayesian Optimization (Dai et al., 2021).

Despite being able to tackle a number of major challenges in the FBO setting,

the above-mentioned FTS algorithm (Dai et al., 2020b) is not equipped with a

rigorous privacy guarantee which is an important consideration in FL. Recent

works (Abadi et al., 2016; McMahan et al., 2018b) have incorporated differential

privacy (DP) into the training of DNN through a general framework for adding

DP to iterative algorithms (McMahan et al., 2018a). In this work (Chapter 6),

following this general DP framework, we integrate DP into FTS to preserve the

user-level privacy, i.e., to rigorously hide the participation of any individual
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user. Moreover, we leverage the ability of this general DP framework to handle

different parameter vectors, as well as the technique of local modeling for BO,

to further improve the utility of our algorithm through distributed exploration

(DE). The resulting differentially private FTS with DE (DP-FTS-DE) algorithm

is endowed with theoretical guarantees for both the privacy and utility and is

amenable to interesting theoretical insights about the privacy-utility trade-off.

We also use real-world experiments to show that DP-FTS-DE achieves a high

utility (i.e., competitive performance) with a strong privacy guarantee (i.e., small

privacy loss) and induces a practical trade-off between privacy and utility.

Robust Meta-Bayesian Optimization (Dai et al., 2022). When BO

is used to optimize a target function, we often have access to some previous

evaluations of potentially related functions. This begs the question as to whether

we can leverage these previous experiences to accelerate the current BO task

through meta-learning (meta-BO), while ensuring robustness against potentially

harmful dissimilar tasks that could sabotage the convergence of BO. In this work

(Chapter 7), we introduce a scalable, principled and robust meta-BO algorithm

called robust meta-Gaussian process-upper confidence bound (RM-GP-UCB).

RM-GP-UCB utilizes a weighted combination of separate acquisition functions

from individual tasks for query selection, hence achieving scalability in the

number of previous tasks and observations for each previous task. We derive

a robust theoretical convergence guarantee for RM-GP-UCB and show that it

is asymptotically no-regret even when some or all previous tasks are dissimilar

to the current task. Moreover, the theoretical guarantee allows RM-GP-UCB to

optimize the weights assigned to the individual previous tasks, hence diminishing

the impact of dissimilar tasks, in a principled way through regret minimization

via online learning. Empirical evaluation shows that RM-GP-UCB performs

effectively and consistently across various applications.

Bayesian Optimization with Recursive Reasoning for Games (Dai et al.,
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2020a). SomeML tasks can be modeled as repeated games between boundedly

rational, self-interested agents with unknown, complex, and costly-to-evaluate

payoff functions. For example, adversarial ML can be modeled as a repeated game

between a defender and an attacker, whose payoff functions are the performance

of the target ML model and its negation respectively. This work (Chapter 8)

presents a recursive reasoning formalism of BO to model the reasoning process in

the interactions among the players in this type of game, which we call Recursive

Reasoning-Based BO (R2-B2). Our R2-B2 algorithm is general in that it does not

constrain the relationship among the payoff functions of different agents and can

thus be applied to various types of games such as constant-sum, general-sum, and

common-payoff games. We prove that by reasoning at level 2 or more and at one

level higher than the other agents, our R2-B2 agent can achieve faster asymptotic

convergence to no regret than that without utilizing recursive reasoning. We also

propose a computationally cheaper variant of R2-B2 called R2-B2-Lite at the

expense of a weaker convergence guarantee. The performance and generality

of our R2-B2 algorithm are empirically demonstrated using synthetic games,

adversarial machine learning, and multi-agent reinforcement learning.

1.3 Organization

In the remainder of this thesis, we firstly introduce the necessary background and

notations in Chapter 2, followed by the related works in Chapter 3. Next, the

following five chapters present each of the five works in detail: BO with early

stopping (Chapter 4), federated BO (Chapter 5), differentiallly private federated

BO (Chapter 6), robust meta-BO (Chapter 7), and BO with recursive reasoning for

games (Chapter 8). Lastly, we summary the thesis and provide a future outlook

in Chapter 9.
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Chapter 2

Background and Notations

In this chapter, we introduce the necessary background and notations which will be

useful throughout this thesis, focusing on Gaussian processes (GP) and Bayesian

optimization (BO). We use lower-case bold-faced symbols to denote (column)

vectors (e.g., x), and upper-case bold-faced symbols to represent matrices (e.g.,

X). Scalars are not highlighted in bold (e.g., x).

2.1 Gaussian Processes

A GP is a stochastic process in which any finite subset of random variables

follows a multivariate Gaussian distribution (Rasmussen and Williams, 2006).

A GP defines a distribution over functions f : X → R, where X ⊂ Rd is

the domain. We focus on the noisy setting in which every observation of the

function f at an input x is corrupted by a zero-mean additive Gaussian noise:

y(x) = f(x) + ε, where ε ∼ N (0, σ2) and σ2 is the noise variance. A GP,

represented as GP(µ(·), k(·, ·)), is fully characterized by its mean function µ(x)

and covariance (kernel) function k(x,x′),∀x,x′ ∈ X . The kernel function k

represents a similarity measure of a pair of inputs, and encodes our assumption on

the smoothness of the function f . We focus on some commonly used stationary
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positive semi-definite kernels, such as the squared exponential (SE) kernel and

Matérn kernel. The SE kernel can be expressed as k(x,x′) = σ2
0 exp(−‖

x−x′‖2
2

2l2
)

where l and σ2
0 are the kernel hyperparameters (referred to as the length scale and

signal variance, respectively). The Matérn kernel can be written as: k(x,x′) =

21−ν

Γ(ν)

(√
2ν‖x−x′‖

2

l

)ν
Kν

(√
2ν‖x−x′‖

2

l

)
, where Γ is the gamma function,Kν is a

modified Bessel function, and ν and l are kernel hyperparameters. Throughout

this thesis, we assume w.l.o.g. that µ(x) = 0 and k(x,x′) ≤ 1, ∀x,x′ ∈ X . As a

result of the definition of GP, conditioned on a set of T observed input-output

pairs DT = {(x1, y(x1)), . . . , (xT , y(xT ))}, the posterior belief at any input x is

Gaussian-distributed, whose posterior mean and covariance can be expressed as:

µT (x) = kT (x)>(KT + σ2I)−1yT ,

σ2
T (x,x′) = k(x,x′)− kT (x)>(KT + σ2I)−1kT (x′),

(2.1)

in which KT = [k(xt,xt′)]t,t′=1,...,T is the T × T gram matrix, kT (x) =

[k(x,xt)]
>
t=1,...,T and yT = [y(x1), . . . , y(xT )]> are both T × 1 column vec-

tors. We denote the posterior variance at x as σ2
T (x) = σ2

T (x,x).

2.2 Bayesian Optimization

In a BO problem, we attempt to find a global maximum of an objective function f

within a domain X ⊂ Rd, i.e., find x∗ ∈ arg maxx∈Xf(x), through sequentially

querying the function f . Throughout this thesis, we assume the domain X to be

discrete for simplicity, however, all our theoretical analysis can be straightfor-

wardly extended to compact domain through a suitable discretization by following

similar steps of analysis to the work of (Srinivas et al., 2010). In iteration t, BO

queries an input xt to observe a noisy output yt = y(xt) = f(xt) + ε, where

ε ∼ N (0, σ2) as defined in Section 2.1. The performance of BO is usually

measured in terms of regret, which represents how much BO suffers from not
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knowing the location of a global maximum in advance. The instantaneous regret

in iteration t is defined as rt = f(x∗)− f(xt), which gives rise to the definitions

of the cumulative regret: RT =
∑T

t=1 rt and simple regret: ST = mint=1,...,T rt.

It is particularly desirable for a BO algorithm to be asymptotically no-regret, i.e.,

for RT to grow sub-linearly. This implies that ST ≤ RT
T

goes to 0 asymptotically,

which guarantees that we are able to find a global maximum asymptotically.

In order to choose xt intelligently to minimize regret, we use a GP as a

surrogate to model the objective function f and hence choose xt by maximizing

an acquisition function αt. That is, in iteration t of BO, we firstly update the GP

posterior belief (2.1), and then use the updated posterior to calculate the acquisition

function, whose maximizer is selected as xt to query: xt = arg maxx∈X αt(x).

The acquisition function needs to be able to balance exploration and exploitation,

that is, balance (a) exploring the places in the input domain with large uncertainty

in order to improve the GP posterior belief, and (b) exploiting the current GP

posterior belief to prefer the input locations with large posterior mean. A

number of acquisition functions have been proposed over the years, such as

Gaussian process-upper confidence bound (GP-UCB) (Srinivas et al., 2010),

Thompson sampling (TS) (Chowdhury andGopalan, 2017), expected improvement

(EI) (Jones et al., 1998), entropy search (Hennig and Schuler, 2012), predictive

entropy search (Hernández-Lobato et al., 2014), knowledge gradient (Frazier,

2018), max-value entropy search (Wang and Jegelka, 2017), etc. In this thesis,

we particularly focus on GP-UCB and TS, mainly due to their strong theoretical

properties, which allow us to derive BO algorithms that are both theoretically

grounded and practically competitive.

The GP-UCB acquisition function takes the simple form of a weighted

combination of the posterior mean and standard deviation: αt(x) = µt−1(x) +
√
βtσt−1(x), which encourages exploitation and exploration respectively. TS

requires sampling a function ft from the GP posterior in iteration t, and then
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choosing themaximum of the sampled function to query: xt = arg maxx∈X ft(x).

Both GP-UCB and TS have been shown to be asymptotically no-regret (Srinivas

et al., 2010; Chowdhury and Gopalan, 2017). Of note, for both GP-UCB

and TS, the upper bound on the cumulative regret depends on the maximum

information gain γT , which represents the maximum amount of information

about the function f that can be obtained from querying any set of T input

locations. The term γT is kernel-dependent, and its asymptotic growth has

been characterized for some commonly used kernels (Srinivas et al., 2010). For

example, for the SE kernel, γT = O
(
(log T )d+1

)
; for the Matérn kernel with

ν > 1, γT = O
(
T d(d+1)/(2ν+d(d+1)) log T

)
.

Note that in future chapters, some notations may be adjusted to be more

suitable for the particular setting under consideration. For example, in Chapter 4

where we give special treatment to the number of training epochs, instead of x,

we denote the input to the objective function by z = [x, n] where x represents

a hyperparameter configuration and n denotes the number of training epochs;

in Chapter 8 where we model games involving two (or more) players, the input

is denoted as x = [x1,x2], where x1 and x2 represent the inputs from the two

players.

2.3 Federated Learning

An important topic related to the works in this thesis (Chapters 5 and 6) is

federated learning (FL) (McMahan et al., 2017). FL has been recently in-

troduced to tackle some major challenges in collaborative training of modern

deep neural networks. In every round of the federated averaging algorithm

(i.e., one of the most representative FL algorithms), every user trains its local

neural network via first-order optimization (e.g., stochastic gradient descent)

and passes its parameters (or gradients) to a central server; the central server
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then aggregates the received parameters/gradients from all users, and broadcasts

the aggregated parameters/gradients back to all users for updating their local

neural networks (McMahan et al., 2017). Some important challenges in FL

include avoiding the sharing of the raw data of users, the requirement to satisfy

the communication bandwidth, the potential high degree of heterogeity among

different users, among others (Kairouz et al., 2019). An important consider-

ation when applying FL to privacy-sensitive use cases is a rigorous privacy

guarantee (Kairouz et al., 2019). Therefore, the privacy-preserving mechanism

of differential privacy has been incorporated into FL (McMahan et al., 2018b),

which modifies the aggregation process by the central server to incorporate

privacy-preserving transformations.
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Chapter 3

Related Works

In this chapter, we give a review of related works for each of the five works

included in this thesis, to elucidate the position of our contributions within the

literature.

3.1 Bayesian Optimization with Early Stopping

Some recent works have been proposed to incorporate early stopping into BO,

in order to make BO more epoch-efficient. Freeze-thaw BO (Swersky et al.,

2014) explores a diverse collection of hyperparameter settings in the initial

stage by training their ML models with a small number of epochs, and then

gradually focuses on (exploits) a small number of promising settings. Despite its

promising epoch efficiency, its performance is not theoretically guaranteed and

its computational cost can be excessive. Multi-fidelity BO (Kandasamy et al.,

2016, 2017; Wu and Frazier, 2018; Zhang et al., 2017) reduces the resource

consumption of BO by utilizing low-fidelity functions which can be obtained

by training the ML model for a small number of epochs. However, in each BO

iteration, since the fidelity (e.g., number of epochs) is determined before function

evaluation, it is not influenced by information that is typically available during
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the training process (e.g., validation accuracy after each epoch). In addition

to BO, attempts have also been made to improve the epoch efficiency of other

hyperparameter optimization algorithms. Some heuristic methods (Baker et al.,

2017; Domhan et al., 2015; Klein et al., 2017) predict the final training outcome

based on partially trained learning curves in order to identify hyperparameter

settings that are predicted to under-perform and early-stop their model training.

Hyperband (Li et al., 2017), which dynamically allocates the computational

resource (e.g., training epochs) through random sampling and eliminates under-

performing hyperparameter settings by successive halving, has been proposed

and shown to perform well in practice. Both the learning curve prediction

methods and Hyperband can be combined with BO to further improve their

epoch efficiency (Domhan et al., 2015; Falkner et al., 2018; Klein et al., 2017),

but their resulting performances are not theoretically guaranteed. Despite these

recent advances, an epoch-efficient BO algorithm with theoretically guaranteed

performance is still lacking, which is what we present in Chapter 4.

3.2 Federated Bayesian Optimization

Since its recent introduction in McMahan et al. (2017), federated learning (FL)

has gained tremendous attention mainly due to its prominent practical relevance in

the collaborative training of ML models such as DNN (McMahan et al., 2017) or

decision tree-based models (Li et al., 2020a,b). Meanwhile, efforts have also been

made to derive theoretical convergence guarantees for FL algorithms (Li et al.,

2018, 2020d). Refer to recent surveys (Kairouz et al., 2019; Li et al., 2019a,b)

for more comprehensive reviews of FL. Although our algorithm (Chapter 5) is

the first BO algorithm in the FL setting, it is also related to some previous works

on BO. Thompson sampling (TS) (Thompson, 1933) has been known as a highly

effective practical technique for multi-armed bandit problems (Chapelle and Li,
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2011; Russo et al., 2017). The Bayesian regret (Russo and Van Roy, 2014) and

frequentist regret (Chowdhury and Gopalan, 2017) of TS in BO have both been

analyzed, and TS has been shown to perform effectively in BO problems such as

high-dimensional BO (Mutny and Krause, 2018). Our federated BO algorithm

(Chapter 5) is also related to multi-fidelity BO (Kandasamy et al., 2016; Poloczek

et al., 2017; Wu et al., 2020; Zhang et al., 2020, 2017) which has the option to

query low-fidelity functions. This is analogous to our federated BO algorithm

(Chapter 5) allowing the target agent to use the information from the other agents

for query selection, and the similarity between an agent and the target agent can be

interpreted as a measure of fidelity. Moreover, our algorithm also bears similarity

to parallel/distributed BO algorithms (Contal et al., 2013; Daxberger and Low,

2017; Desautels et al., 2014), especially those based on TS (Hernández-Lobato

et al., 2017; Kandasamy et al., 2018). However, there are fundamental differences:

For example, they usually optimize a single objective function whereas we need

to consider possibly heterogeneous objective functions from different agents.

The work of Garcia-Barcos and Martinez-Cantin (2019) has proposed a fully

distributed BO algorithm which has also adopted a sampling-based strategy for

query selection. However, similar to other distributed BOmethods, Garcia-Barcos

and Martinez-Cantin (2019) have also focused on optimizing a single objective

function, and have not considered the important issue of avoiding transmitting

the raw data in the federated setting. Furthermore, some previous works on

meta-learning for BO (Feurer et al., 2018; Wistuba et al., 2018), which study how

to use the information from other related BO tasks to accelerate the current BO

task, can be adapted for the federated BO setting. However, as we will discuss in

Chapter 5, these works are not equipped with theoretical convergence guarantee

and do not tackle some important issues in FL and FBO such as avoiding the

transmission of raw data and achieving efficient communication.
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3.3 Differentially Private Federated

Bayesian Optimization

Recent works have incorporated privacy preservation into BO by applying DP

to the output of BO (Kusner et al., 2015), using a different notion of privacy

(other than DP) (Nguyen et al., 2018), adding DP to BO in the outsourced

setting (Kharkovskii et al., 2020), or adding local DP into BO (Zhou and Tan,

2020). However, none of these works can tackle the FBO setting considered

in this work. Similar to FTS (Section 3.2), our DP-FTS-DE algorithm in this

chapter (Chapter 6) also shares similarity with previous works on parallel BO

algorithms (Contal et al., 2013; Desautels et al., 2014; Hernández-Lobato et al.,

2017; Kandasamy et al., 2018). However, parallel BO optimizes a single objective

function while we allow agents to have different objective functions. Our DE

technique bears similarity to that of Eriksson et al. (2019) which has also used

separate GP surrogates to model different local sub-regions (hyper-rectangles)

and shown that this significantly improves the performance. Privacy preservation

using DP has been an important topic for FL, including both central DP (i.e., with

a trusted central server) (McMahan et al., 2018b) and local (Kasiviswanathan

et al., 2011; Warner, 1965) or distributed DP (Bittau et al., 2017; Cheu et al.,

2019; Dwork et al., 2006a; Shi et al., 2011) (i.e., without a trusted central server).

3.4 Robust Meta-Bayesian Optimization

Some previous works on meta-BO have built a joint GP surrogate using all

previous and current observations, and represented task similarity through meta-

features (Bardenet et al., 2013; Schilling et al., 2016; Yogatama and Mann,

2014). However, these algorithms suffer from the requirement of handcrafted

meta-features, which is avoided in other works that learn task similarity from
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the observations (Swersky et al., 2013; Shilton et al., 2017). For example,

multitask BO (Swersky et al., 2013) uses a multitask GP as a surrogate and

models each task as an output of the GP. These works have included all previous

and current observations in a single GP surrogate and are thus limited by GP’s

scalability. There have also been other empirical works which replace GP with

Bayesian linear regression for scalability (Perrone et al., 2018), tackle sequentially

arriving tasks (Golovin et al., 2017; Poloczek et al., 2016), learn a set of good

initializations (Feurer et al., 2015; Wistuba et al., 2015b), learn a reduced search

space for BO from previous tasks (Perrone et al., 2019), handle the issue of

different function scales using Gaussian Copulas (Salinas et al., 2020), or use

the meta-observations to learn the entire acquisition function through RL (Volpp

et al., 2020). The work of Wang et al. (2018) has learned the GP prior from

previous tasks and also given theoretical guarantee. However, they have shown in

both theory and practice that a large training set of meta-observations (≥ 5000)

is required for their method to work well, while we focus on the more practical

setting ofmeta-BOwhere the number of availablemeta-observationsmay be small.

We have also verified that our algorithm outperforms the method from Wang

et al. (2018) in the experiment that is most favorable for their method among

all our experiments (Chapter 7). Multi-fidelity BO methods (Kandasamy et al.,

2016, 2017; Wu and Frazier, 2018; Zhang et al., 2017) can also be applied to

solve meta-BO problems by treating the previous tasks as observations from

lower-fidelity functions and only allowing queries of the target function (not

lower-fidelity functions).

Some recent works have aimed to improve the scalability of GP-based meta-

BO algorithms by building a separate GP surrogate for each task (Feurer et al.,

2018; Wistuba et al., 2016, 2018). The work of Wistuba et al. (2016) has used

a weighted combination of the posterior mean of each individual GP surrogate

as the joint posterior mean while the posterior variance is derived using only
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the target observations. The Ranking-weighted Gaussian Process Ensemble

(RGPE) algorithm (Feurer et al., 2018) has extended the work of Wistuba et al.

(2016) by estimating the joint objective function as a weighted combination of

individual objective functions, such that the resulting joint surrogate remains

a GP (unlike Wistuba et al. (2016)) and can thus be plugged into standard

BO algorithms. The work of Wistuba et al. (2018) has proposed the transfer

acquisition function (TAF) algorithm, which has also used aweighted combination

of the acquisition functions (i.e., expected improvement) from the individual tasks

for query selection. In these works, the weight of a previous task is heuristically

chosen to be proportional to the accuracy of the pairwise ranking of the target

observations produced by either (a) the posterior mean of the GP surrogate of

the previous task (TAF) (Wistuba et al., 2018) or (b) functions sampled from the

posterior GP surrogate (RGPE) (Feurer et al., 2018). As we will show in our

experiments (Chapter 7), our proposed RM-GP-UCB algorithm outperforms both

RGPE and TAF in a number of real-world experiments.

3.5 Bayesian Optimization with Recursive

Reasoning for Games

The connection between BO and game theory has recently begun to be explored.

The recent work of (Sessa et al., 2019) has combined online learning and GP-

UCB to derive a no-regret learning algorithm called GP-multiplicative weight

(GP-MW) for repeated games. As we will explain in Chapter 8, GP-MW can be

encompassed by our R2-B2 algorithm as a special case in which no recursive

reasoning is performed. Moreover, BO has also been recently applied in game

theory to find the Nash equilibria (Picheny et al., 2019).

Humans possess the ability to reason about the mental states of others (Gold-

man, 2012). In particular, a person tends to reason recursively by analyzing
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the others’ thinking about himself, which gives rise to recursive reasoning (Py-

nadath and Marsella, 2005). The recursive reasoning model of humans has

inspired the development of the cognitive hierarchy model in behavioral game

theory, which uses recursive reasoning to explain the behavior of players in

games (Camerer et al., 2004). Moreover, the improved decision-making capa-

bility offered by recursive reasoning has motivated its application in ML and

sequential decision-making problems such as interactive partially observable

Markov decision processes (Gmytrasiewicz and Doshi, 2005; Hoang and Low,

2013), multi-agent reinforcement learning (Wen et al., 2019), among others. In

this work (Chapter 8), we incorporate recursive reasoning into BO to derive

efficient strategies for players in repeated games.

Deep neural networks (DNN) have recently been found to be vulnerable to

carefully crafted adversarial examples (Szegedy et al., 2014). Since then, a variety

of adversarial attack methods have been developed to exploit this vulnerability of

DNN (Goodfellow et al., 2015). However, most of the existing attack methods

are white-box attacks since they require access to the gradient of the ML model.

In contrast, the more realistic black-box attacks (Tu et al., 2019; Moon et al.,

2019), which we have adopted in our experiments in Chapter 8, only require

query access to the target ML model and have been attracting significant attention

recently. Of note, BO has recently been used for black-box adversarial attacks

(without considering defenses) and demonstrated promising query efficiency (Ru

et al., 2020). On the other hand, many attempts have been made to design

adversarial defense methods (Madry et al., 2017; Tramèr et al., 2018) to make

ML models robust against adversarial attacks. In our experiments, we have

adopted the input reconstruction/transformation technique (Meng and Chen,

2017; Samangouei et al., 2018) as the defense mechanism, in which the defender

attempts to transform the perturbed input to ensure the correct prediction by

the ML model. Refer to the detailed survey of adversarial ML in (Yuan et al.,
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2019). Our algorithm, which leverages the combination of BO and recursive

reasoning (Chapter 8), can be naturally applied to adversarial ML by modeling

the interactions between the attacker and the defender as a repeated game, and

hence deriving efficient strategies for both players.
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Chapter 4

Bayesian Optimization with Early

Stopping

This chapter is based on the following paper published at ICML 2019:

Dai, Z., Yu, H., Low, B. K. H., & Jaillet, P. (2019). Bayesian optimization meets

Bayesian optimal stopping. In Proc. ICML (pp. 1496-1506).

4.1 Introduction

ManyMLmodels require running an iterative training procedure for some number

of epochs such as stochastic gradient descent for neural networks (LeCun et al.,

2015) and boosting procedure for gradient boosting machines (Friedman, 2001).

When using BO for hyperparameter tuning, any query of a hyperparameter

setting usually involves training the ML model for a fixed number of epochs.

The information that is typically available during the training process (e.g.,

validation accuracy after each epoch) might be exploited for improving the epoch

efficiency of BO algorithms, specifically, by early-stopping model training under

hyperparameter settings that will end up under-performing, hence eliminating

unnecessary training epochs. Note that this objective is different from that of

23



4.1. INTRODUCTION

standard early stopping during the training of neural networks, which is used to

prevent overfitting. To address this challenging issue, some recent works have

been proposed, such as free-thaw BO (Swersky et al., 2014), multi-fidelity BO

(Kandasamy et al., 2016, 2017), learning curve prediction (Baker et al., 2017;

Domhan et al., 2015; Klein et al., 2017), Hyperband (Li et al., 2017; Falkner

et al., 2018), among others (refer to Section 3.1 for more detail). However, we

still lack an epoch-efficient algorithm that can incorporate early stopping into

BO (i.e., by exploiting information available during the training process) and yet

offer a theoretical performance guarantee, the design of which is likely to require

a principled decision-making mechanism for determining the optimal stopping

time.

Optimal stopping is a classic research topic in statistics and operations research

regarding sequential decision-making problems whose objective is to make the

optimal stopping decision with a small number of observations (Ferguson, 2006).

In Bayesian optimal stopping (BOS) or Bayesian sequential design, the decision

between stopping vs. continuing is made to maximize the expected utility or,

equivalently, minimize the expected loss (Powell and Ryzhov, 2012). BOS has

found success in application domains such as finance (Longstaff and Schwartz,

2001), clinical design (Brockwell and Kadane, 2003; Müller et al., 2007; Wathen

and Thall, 2008), and economics (Davis and Cairns, 2012). The capability of

BOS in providing a principled optimal stopping mechanism makes it a prime

candidate for introducing early stopping into BO in a theoretically sound and

rigorous way.

This work proposes to unify Bayesian optimization (specifically, GP-UCB)

with Bayesian optimal stopping (BO-BOS) to boost the epoch efficiency of BO

(Section 4.3). Intuitively, GP-UCB is acclaimed for being sample-efficient in the

number of function evaluations while BOS can reduce the required number of

epochs for each function evaluation. BO-BOS unifies the best of both worlds to
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yield an epoch-efficient hyperparameter optimization algorithm. Interestingly,

in spite of the seemingly disparate optimization objectives of GP-UCB vs. BOS

(respectively, objective function v.s. expected loss), BO-BOS can preserve the

trademark (asymptotic) no-regret performance of GP-UCB with our specified

choice of BOS parameters that is amenable to an elegant interpretation in terms of

the exploration-exploitation trade-off (Section 4.4). Though the focus of this work

here is on epoch-efficient BO for hyperparameter tuning, we additionally evaluate

the performance of BO-BOS empirically in two other interesting applications to

demonstrate its generality: policy search for reinforcement learning, and joint

hyperparameter tuning and feature selection (Section 4.5).

4.2 Background and Problem Formulation

In this chapter, we denote the input to the objective function f as z = [x, n] ∈ Z ,

where x represents a hyperparameter setting and n ∈ [1, N ] is an integer denoting

the number of epochs trained for x where N is the maximum number of epochs.

Therefore, in iteration t, the BO-BOS algorithm needs to select a hyperparameter

configuration (xt) and how many epochs to run (nt), which will combine to form

the queried input zt = [xt, nt]. BOS provides a principled mechanism for making

the Bayes-optimal stopping decision with a small number of observations. As

shall be seen in Algorithm 4.1, in each iteration t of BO-BOS, BOS is used

to early-stop model training under the selected input hyperparameters xt that

will end up under-performing, hence reducing the required number of training

epochs. In a BOS problem, the goal is to decide whether to (a) stop and conclude

either hypothesis/event θt = θt,1 or θt = θt,2 corresponding to terminal decision

d1 or d2, or to (b) gather one more observation via the continuation decision

d0. Let yt,n′ be the noisy output (validation accuracy) observed in epoch n′ and

yt,n , [yt,n′ ]
>
n′=1,...,n be a vector of noisy outputs observed up till epoch n in
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iteration t. Recall that in iteration t, the ML model is trained using the selected

input hyperparameter setting and number of epochs [xt, nt] to yield the noisy

observed output (validation accuracy) yt. So, yt = yt,nt for t = 1, . . . , T . After

each epoch n, the posterior belief of event θt is updated to P(θt|yt,n) which will

be used to compute the expected losses of terminal decisions d1 and d2. Such

a loss function l has to encode the cost of making a wrong decision. Define

ρt,n(yt,n) as the minimum expected loss among all decisions in epoch n:

ρt,n(yt,n) , min{ Eθt|yt,n [l(d1, θt)], Eθt|yt,n [l(d2, θt)],

cd0 + Eyt,n+1|yt,n [ρt,n+1(yt,n+1)] }
(4.1)

for n = N0 + 1, . . . , N − 1 where the first two terms are the expected losses

of terminal decisions d1 and d2, the last term sums the immediate cost cd0 and

expected future loss of making the continuation decision d0 to continue model

training in the next epoch n + 1 to yield the noisy observed output (validation

accuracy) yt,n+1, and ρt,N(yt,N) , min{ Eθt|yt,N [l(d1, θt)], Eθt|yt,N [l(d2, θt)] }.

Since ρt,n depends on ρt,n+1, it naturally prompts the use of backward induction to

solve the BOS problem (4.1) exactly, which is unfortunately intractable due to an

uncountable set of possible observed outputs yt,n+1. This computational difficulty

can be overcome using approximate backward induction techniques (Brockwell

and Kadane, 2003; Müller et al., 2007) whose main ideas include using summary

statistics to represent the posterior beliefs, discretizing the space of summary

statistics, and approximating the expectation terms via sampling. Appendix A.1

describes a commonly-used approximate backward induction algorithm (Müller

et al., 2007).

Solving the BOS problem (4.1) yields a Bayes-optimal decision rule in each

epoch n: Take the Bayes-optimal stopping decision if the expected loss of either
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terminal decision d1 or d2 is at most that of the continuation decision d0, that is,

min{ Eθt|yt,n [l(d1, θt)], Eθt|yt,n [l(d2, θt)] } ≤ cd0 + Eyt,n+1|yt,n [ρt,n+1(yt,n+1)].

Otherwise, continue model training to yield the noisy observed output (validation

accuracy) yt,n+1 and repeat this rule in the next epoch n+ 1.

4.3 BO-BOS Algorithm

In this section, we will describe our proposed BO-BOS algorithm (Section 4.3.1)

and define the loss function l in BOS (4.1) such that it can serve as an effective

early-stopping mechanism in BO (Section 4.3.2). We focus on problem settings

where the objective function f is bounded and monotonically increasing in n:

Assumption 4.1. (a) f(z) ∈ [0, 1] for all z ∈ Z and (b) f([x, n]) ≤ f([x, n+1])

for all x and n = 1, . . . , N − 1.

Assumption 4.1a is not restrictive since it applies to any bounded f with a

proper transformation. Assumption 4.1b holds reasonably well in a number of

important ML problems: (a) f represents the validation accuracy of an MLmodel

and n denotes the number of training epochs or the number of selected features

during feature selection, and (b) f represents the (discounted) cumulative rewards

(assuming non-negative rewards) in reinforcement learning (RL) and n denotes

the number of steps taken by the agent in the environment. Our experiments

in Section 4.5 will demonstrate that BO-BOS outperforms the state-of-the-art

hyperparameter optimization algorithms in these ML problems.

4.3.1 Algorithm Description

In each iteration t of BO-BOS (Algorithm 4.1), the input hyperparameters xt are

selected to maximize the GP-UCB acquisition function with the input dimension
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of training epochs fixed at N (line 2). The ML model is trained using xt for N0

initial training epochs to yield the noisy observed outputs (validation accuracies)

yt,N0 (line 3). After that, the BOS problem is solved (line 5) to obtain Bayes-

optimal decision rules (see Sections 4.2 and 4.3.2). Then, in each epoch n > N0,

model training continues under xt to yield the noisy observed output (validation

accuracy) yt,n (line 8). If both of the following conditions are satisfied (line 9):

C1. when the BOS decision rule in epoch n outputs the stopping decision;

C2. when σt−1([xt, N ]) ≤ κ σt−1([xt, n]) ,

then model training is early-stopped in epoch nt = n. Otherwise, the

above procedure is repeated in epoch n + 1. If none of the training epochs

n = N0 + 1, . . . , N − 1 satisfy both C1 and C2, then nt = N (i.e., no early

stopping). Finally, the GP posterior belief is updated with the selected input

hyperparameter setting zt = [xt, nt] and the corresponding noisy observed output

(validation accuracy) yt = yt,nt (line 11). BO-BOS then proceeds to the next

iteration t+ 1.

Algorithm 4.1 BO-BOS
1: for t = 1, 2, . . . , T do
2: xt ← arg maxx µt−1([x, N ]) +

√
βtσt−1([x, N ])

3: Train model using xt for N0 epochs to yield yt,N0

4: n← N0

5: Solve BOS problem (4.1) to obtain decision rules
6: repeat
7: n← n+ 1
8: Continue model training using xt to yield yt,n
9: until (n = N) ∨ (C1 ∧ C2)
10: nt = n
11: Update GP posterior belief with zt = [xt, nt] and yt = yt,nt

To understand the rationale of our choices of C1 and C2, the BOS decision

rule in C1 recommends the stopping decision to early-stop model training in

epoch n if it concludes that model training under xt for N epochs will produce

a validation accuracy not exceeding the currently found maximum in iterations

1, . . . , t− 1; this will be formally described in Section 4.3.2. On the other hand,
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C2 prefers to evaluate the validation accuracy f of the ML model with the input

query [xt, n] of fewer training epochs n < N than [xt, N ] if the uncertainty of the

validation accuracy f([xt, N ]) achieved by model training under xt forN epochs

is not more than a factor of κ ≥ 1 of that of f([xt, n]) for n epochs; the degree

of preference is controlled by parameter κ. Thus, by satisfying both C1 and C2,

C2 lends confidence to the resulting performance of model training under xt for

N epochs that is concluded by C1 to be underwhelming. So, model training

can be early-stopped in epoch nt = n. More importantly, both C1 and C2 are

necessary for theoretically guaranteeing the no-regret performance of BO-BOS

(Section 4.4).

4.3.2 BOS for Early Stopping in BO

Let the currently found maximum in iterations 1, . . . , t − 1 be denoted as

y∗t−1 , maxt′∈{1,...,t−1} yt′ . In the context of early stopping in BO, BOS has to

decide in each epoch n of iteration twhether model training under xt forN epochs

will produce a validation accuracy not more than the currently found maximum

(offset by a noise correction term ξt), i.e., f([xt, N ]) ≤ y∗t−1 − ξt where y∗0 , 0

and ξt is defined later in Theorem 4.1. To achieve this, the terminal decisions

d1 and d2 and the continuation decision d0 in BOS are defined as follows: d1

stops and concludes that f([xt, N ]) ≤ y∗t−1 − ξt, d2 stops and concludes that

f([xt, N ]) > y∗t−1 − ξt, and d0 continues model training for one more epoch.

Then, the event θ (Section 4.2) becomes

θt =


θt,1 if f([xt, N ]) ≤ y∗t−1 − ξt ,

θt,2 otherwise .

We define l(d1, θt) and l(d2, θt) of the respective terminal decisions d1 and d2 as

0-K loss functions which are commonly used in clinical designs (Jiang et al.,
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2013; Lewis and Berry, 1994) due to their simplicity and interpretablility:

l(d1, θt) , K11θt=θt,2 and l(d2, θt) , K21θt=θt,1 (4.2)

where the parameters K1 > 0 and K2 > 0 represent the costs of making the

wrong terminal decisions d1 and d2, respectively. Since f([xt, N ]) is not known

in epoch n < N , the expected losses of terminal decisions d1 and d2 have to be

evaluated instead:

Eθt|yt,n [l(d1, θt)] = K1P(θt = θt,2|yt,n) ,

Eθt|yt,n [l(d2, θt)] = K2P(θt = θt,1|yt,n) .
(4.3)

According to (4.3), if K1 (K2) is set to +∞, then Eθt|yt,n [l(d1, θt)] = +∞

(Eθt|yt,n [l(d2, θt)] = +∞). Consequently, terminal decision d1 (d2) is never

recommended. The above definitions are plugged into (4.1) to derive the

minimum expected loss ρt,n(yt,n) in epoch n = N0 + 1, . . . , N .

Our formulation of the BOS problem (4.1) for early stopping in BO can be

solved using an adapted approximate backward induction algorithm: To account

for Assumption 4.1b, a kernel with a prior bias towards exponentially decaying

learning curves (Swersky et al., 2014) is used to fit a GP model to the validation

errors 1− yt,N0 of the ML model trained for N0 initial epochs. Samples are then

drawn from the resulting GP posterior belief for forward simulation of sample

paths from epochs N0 + 1 to N , which are used to estimate the P(θt|yt,n) and

P(yt,n+1|yt,n) terms necessary for approximate backward induction. Following

some applications of BOS (Jiang et al., 2013; Müller et al., 2007), the average

validation error is used as the summary statistic. Our adapted approximate

backward induction algorithm is explained in detail in Appendix A.2. Note that

the use of the kernel favoring exponentially decaying learning curves in generating

the forward simulation samples is critical for incorporating our prior knowledge
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about the behavior of learning curves, which gives BO-BOS an advantage over

multi-fidelity BO algorithms which do not exploit this prior knowledge, thus

contributing to the favorable performance of BO-BOS.

After our BOS problem is solved, Bayes-optimal decision rules are obtained

and used by C1 in BO-BOS (Algorithm 4.1): Specifically, after model training to

yield validation accuracy yt,n (line 8), the summary statistic is first updated to∑n
n′=1 yt,n′/n and the BOS decision rule in epoch n recommends a corresponding

optimal decision. If the recommended decision is d1 (i.e., stopping and concluding

f([xt, N ]) ≤ y∗t−1 − ξt), then model training under xt is early-stopped in epoch

n (assuming that C2 is satisfied). Otherwise, model training continues under xt

for one more epoch and the above procedure is repeated in epoch n + 1 until

the last epoch n = N is reached. Note that terminal decision d2 (i.e., stopping

and concluding f([xt, N ]) > y∗t−1 − ξt) does not align with the BO objective of

sequentially maximizing f . So, when the recommended decision is d2, there is

no early stopping and model training continues under xt for one more epoch.

4.4 Theoretical Analysis

The goal of the theoretical analysis is to characterize the growth of the simple

regret ST (Section 2.2) of the proposed BO-BOS algorithm and thus show how

the algorithm should be designed in order for ST to asymptotically go to 0,

i.e., for the algorithm to be no-regret. To account for the additional uncertainty

introduced by BOS, we analyze the expected regret, in which the expectation

is taken with respect to the posterior probabilities from the BOS algorithms:

P(f([xt, N ]) > y∗t−1 − ξt|yt,nt).

Wemake the following assumption on the smoothness of the objective function

f :
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Assumption 4.2. Assume for the kernel k, for some a and b,

P(supz∈Z |∂f/∂zj| > L) ≤ a exp(−(L/b)2)

for j = 1, . . . , d where zj is the j-th component of input z.

Assumption 4.2 is satisfied by some commonly used kernels such as the SE kernel

and Matérn kernel with ν > 2 (Srinivas et al., 2010) (Section 2.1). For simplicity,

we assume that the underlying domain Z is discrete, i.e. |Z| <∞. However, it

is straightforward to extend the analysis to general compact domain by following

similar analysis strategies as those in Appendix A.2. of (Srinivas et al., 2010).

Theorem 4.1 below shows an upper bound on the expected simple regret of the

BO-BOS algorithm.

Theorem 4.1. Suppose that Assumptions 4.1 and 4.2 hold. Let δ, δ′, δ′′ ∈ (0, 1),

βt , 2 log(|Z|t2π2/(6δ)), and τT ,
∑T

t=1 1nt<N be the number of BO iterations

in which early stopping happens from iterations 1 to T . Let κ be the parameter

used in C2. At iteration t, the BOS algorithm is run with the corresponding fixed

cost parameters K2 and cd0 , as well as iteration-dependent cost parameter K1,t,

ξ1 , 0, and ξt ,
√

2σ2 log(π2t2(t− 1)/(6δ′′)) for t > 1. Then ∀T ≥ 1, with

probability of at least 1− δ − δ′ − δ′′,

E[ST ] ≤ κ
√
TC1βTγT
T

+

∑T
t=1 ηt
T

+
1

T
Nb

√
log

da

δ′
τT

in which ηt ,
K2+cd0
K1,t

, C1 = 8/log(1+σ−2), γT is the maximum information gain

about the function f from any set of observations of size T , and the expectation

is w.r.t.
∏

t∈{t′|t′=1,...,T,nt′<N}
P(f([xt, N ]) > y∗t−1 − ξt|yt,nt) used in the BOS

algorithm.

Theorem 4.2 below states how the BOS parameters should be chosen to make

BO-BOS asymptotically no-regret.
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Theorem 4.2. In Theorem 4.1, if K1,t is an increasing sequence such that

K1,1 ≥ K2 + cd0 and that K1,t goes to +∞ in finite number of BO iterations,

then, with probability of at least 1− δ − δ′ − δ′′, E[ST ] goes to 0 asymptotically.

The proof of both theorems is presented in Appendix A.3. The first term in the

upper bound of E[ST ] in Theorem 4.1 matches that of the simple regret of the

GP-UCB algorithm (up to the constant κ). Note that the theoretical results rely

on the exact solution of the BOS problems; however, in practice, a trade-off exists

between the quality of the approximate backward induction and the computational

efficiency. In particular, increasing the number of forward simulation samples

and making the grid of summary statistics more fine-grained both lead to better

approximation quality, while increasing the computational cost. Recommended

approximation parameters that work well in all our experiments and thus strike a

reasonable balance between these two aspects are given in Section 4.5.

Interestingly, the choice of an increasing K1,t sequence as required by

Theorem 4.2 is well justified in terms of the exploration-exploitation trade-off. As

introduced in section 4.3.2, K1 represents how much we would like to penalize

the BOS algorithm for falsely early-stopping (taking decision d1). Therefore,

increasing values ofK1 implies that, as the BO-BOS algorithm progresses, we

become more and more cautious at early-stopping. In other words, the preference

of BOS for early stopping diminishes over BO iterations. Interestingly, this

corresponds to sequentially shifting our preference from exploration (using small

number of epochs) to exploitation (using large number of epochs) throughout all

runs of the BOS algorithms, which is an important decision-making principle

followed bymany sequential decision-making algorithms such as BO,multi-armed

bandit, reinforcement learning, among others.

Another intriguing interpretation of the theoretical results is that the growth

rate of the K1,t sequence implicitly determines the trade-off between faster

convergence of the BO algorithm (smaller number of BO iterations) and more
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computational saving in each BO iteration (smaller number of training epochs

on average). In particular, if K1,t grows quickly, the second and third terms in

the upper bound in Theorem 4.1 both decay fast, since ηt is inversely related

to K1,t and large penalty for early stopping results in small τT ; as a result,

a large number of hyperparameters are run with N epochs and the resulted

BO-BOS algorithm behaves similarly to GP-UCB, which is corroborated by

the upper bound on E[ST ] in Theorem 4.1 since the first term dominates. On

the other hand, if the K1,t sequence grows slowly, then the second and third

terms in Theorem 4.1 decay slowly; consequently, these two terms dominate

the regret and the resulted algorithm early-stops very often, thus leading to

smaller number of epochs on average, at the potential expense of requiring more

BO iterations. Furthermore, the constant κ used in C2 also implicitly encodes

our relative preference for early-stopping. Specifically, large values of κ favor

early stopping by relaxing C2: σt−1([xt, n]) ≥ σt−1([xt, N ])/κ; however, more

early-stopped function evaluations might incur larger number of required BO

iterations as can be verified by the fact that larger κ increases the first regret term

in Theorem 4.1 (which matches the regret of GP-UCB). In practice, as a result of

the above-mentioned trade-offs, the best choices of the BOS parameters and κ

are application-dependent. In addition, to ensure desirable behaviors of BOS, the

BOS parameters should be chosen with additional care. In particular, cd0 should

be small, whereasK1,t should be of similar order withK2 initially. In Section 4.5,

we recommend some parameters that work well in all our experiments and thus

are believed to perform robustly in practice.

4.5 Experiments and Discussion

The performance of BO-BOS is empirically compared with four other hyperpa-

rameter optimization algorithms: GP-UCB (Srinivas et al., 2010), Hyperband
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Figure 4.1: Best-found validation error of logistic regression v.s. the total number
of epochs (averaged over 10 random initializations). K2 = 99 and cd0 = 1
are fixed; K1,1 = 100 for all four BO-BOS algorithms; for t > 1, the different
K1,t sequences are: (K1,t)a = K1,t−1

0.89
; (K1,t)b = K1,t−1

0.95
; (K1,t)c = K1,t−1

0.99
;

(K1,t)d = K1,t−1

1.0
= K1,1.

(Li et al., 2017), multi-fidelity BO algorithm called BO with continuous ap-

proximations (BOCA) (Kandasamy et al., 2017), and GP-UCB with learning

curve prediction using an ensemble of Bayesian parametric regression models

(LC Prediction) (Domhan et al., 2015). Freeze-thaw BO is not included in

the comparison since its implementation details are complicated and not fully

available. We empirically evaluate the performance of BO-BOS in hyperparame-

ter optimization of logistic regression (LR) and convolutional neural networks

(CNN), respectively, in Sections 4.5.1 and 4.5.2, and demonstrate its generality

in two other interesting applications in Section 4.5.3. Due to lack of space,

additional experimental details are deferred to Appendix A.4.

4.5.1 Hyperparameter Optimization of Logistic Regression

We first tune three hyperparameters of LR trained on the MNIST image dataset.

Although both the K1,t sequence and κ determine the trade-off between the

number of BO iterations and the number of epochs on average as mentioned in

section 4.4, for simplicity, we fix κ = 2 and investigate the impact of different

sequences of K1,t values.

As shown in Fig. 4.1, the sequences (K1,t)a, (K1,t)b and (K1,t)c lead to
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similar performances, all of which outperform GP-UCB. On the other hand,

the algorithm with fixed K1 values ((K1,t)d), despite having fast performance

improvement initially, eventually finds a worse hyperparameter setting than all

other algorithms. This undesirable performance results from the fact that fixed

K1 values give constant penalty to falsely early-stopping throughout all runs

of the BOS algorithms, and as the incumbent validation error decreases, the

preference of the algorithm for early stopping will increase, thus preventing the

resulting algorithm from beginning to exploit (running promising hyperparameter

settings with N epochs). This observation demonstrates the necessity of having

an increasing sequence ofK1,t values, thus substantiating the practical relevance

of our theoretical analysis (Theorem 4.2). The sequence (K1,t)b, as well as the

values of K2 = 99 and cd0 = 1, will be used in the following experiments if not

further specified.

4.5.2 Hyperparameter Optimization of Convolutional Neural

Networks

In this section, we tune six hyperparameters of CNN using two image datasets:

CIFAR-10 (Krizhevsky, 2009) and Street View House Numbers (SVHN) (Netzer

et al., 2011). Note that the goal of the experiments is not to compete with the

state-of-the-art models, but to compare the efficiency of different hyperparameter

tuning algorithms, so no data augmentation or advanced network architectures

are used.

As shown in Figures 7.2a and b, BO-BOS outperforms all other algorithms

under comparison in terms of the run-time efficiency. Note that the horizontal

axis, which represents the wall-clock time, includes all the time spent during

the algorithms, including the running time of machine learning models, the

approximate backward induction used to solve BOS, etc. Although Hyperband
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(a) (b)

Figure 4.2: Best-found validation error of CNN v.s. run-time (averaged over 30
random initializations).

is able to quickly reduce the validation error in the initial stage, it eventually

converges to sub-optimal hyperparameter settings compared with both GP-UCB

and BO-BOS. Similar findings have been reported in previous works (Klein et al.,

2017; Falkner et al., 2018) and they might be attributed to the pure-exploration

nature of the algorithm. Our BO-BOS algorithm, which trades off exploration

and exploitation, is able to quickly surpass the performance of Hyperband and

eventually converges to significantly better hyperparameter settings. In addition,

we also ran the BOHB algorithm (Falkner et al., 2018) which combines Hyperband

and BO; however, BOHB did not manage to reach comparable performance

with the other algorithms in these two tasks. We observed that the sub-optimal

behavior of Hyperband and BOHB observed here can be alleviated if the search

space of hyperparameters is chosen to be smaller, in which case the advantage

of pure exploration can be better manifested. The unsatisfactory performance

of BOCA might be explained by the fact that it does not make use of the

intermediate validation errors when selecting the number of epochs. In contrast,

BO-BOS takes into account the observations after each training epoch when

choosing the optimal stopping time, and thus is able to make better-informed

decisions. Moreover, since BOCA is designed for general scenarios, the useful

assumption of monotonic learning curve utilized by BO-BOS is not exploited;

therefore, BOCA is expected to perform better if the fidelity levels result from
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data sub-sampling. LC Prediction performs similarly to GP-UCB, which might

be because the predicted final values of the learning curves are used as real

observations in the GP surrogate function (Domhan et al., 2015), thus invalidating

the theoretical guarantee and deteriorating the convergence of GP-UCB, which

offsets the computational saving provided by early stopping. BO-BOS, on the

other hand, offers theoretically guaranteed convergence, thus allowing explicit

control over the trade-off between the speed of convergence and the reduction in

the average number of epochs as discussed in Section 4.4.

4.5.3 Novel Applications of the BO-BOS Algorithm

4.5.3.1 Policy Search for RL

Thanks to its superb sample efficiency, BO has been found effective for policy

search in RL (Martinez-Cantin et al., 2007; Wilson et al., 2014), especially when

policy evaluation is costly such as gait optimization for robots (Lizotte et al.,

2007) and vehicle navigation (Brochu et al., 2010). In policy search, the return of

a policy is usually estimated by running the agent in the environment sequentially

for a fixed number of steps and calculating the cumulative rewards (Wilson

et al., 2014). Thus, the sequential nature of policy evaluation makes BO-BOS an

excellent fit to improve the efficiency of BO for policy search in RL.

We apply our algorithm to the Swimmer-v2 task from OpenAI Gym, MuJoCo

(Brockman et al., 2016; Todorov et al., 2012), and use a linear policy consisting

of 16 parameters. Each episode consists of 1000 steps, and we treat every m

consecutive steps as one single epoch such that N = 1000/m. Direct application

of BO-BOS in this task is inappropriate since the growth pattern of cumulative

rewards differs significantly from the evolution of the learning curves of ML

models (Appendix A.4.3). Therefore, the rewards are discounted (by γ) when

calculating the objective function, because the pattern of discounted return

38



4.5. EXPERIMENTS AND DISCUSSION

(cumulative rewards) bears close resemblance to that of learning curves. Note

that although the value of the objective function is the discounted return, we also

record and report the corresponding un-discounted return, which is the ultimate

objective to be maximized. As a result, N and γ should be chosen such that the

value of discounted return faithfully aligns with its un-discounted counterpart.

Fig. 4.3a plots the best (un-discounted) return in an episode against the total

number of steps, in which BO-BOS (with N = 50 and γ = 0.9) outperforms

GP-UCB (for both γ = 0.9 and γ = 1.0). The observation that the solid red line

shows better returns than the two dotted red lines might be because overly small

γ (0.75) and overly large N (100) both enlarge the disparity between discounted

and un-discounted returns since they both downplay the importance of long-term

discounted rewards. Moreover, not discounting the rewards (γ = 1) leads to poor

performance, corroborating the earlier analysis motivating the use of discounted

rewards. The results demonstrate that even though BO-BOS is not immediately

applicable in the original problem, it can still work effectively if the problem is

properly transformed, which substantiates the general applicability of BO-BOS.

Moreover, we also applied Hyperband in this task, but it failed to converge

to a comparable policy to the other methods (achieving an average return of

around 2.5), which further supports our earlier claim stating that Hyperband

under-performs when the search space is large because there are significantly

more parameters (16) than the previous tasks.

Interestingly, both BO-BOS and GP-UCB use significantly less steps to

substantially outperform the benchmarks1 achieved by some recently developed

deep RL algorithms, in which the best-performing algorithm (Deep Deterministic

Policy Gradients) achieves an average return of around 120. Although the simplic-

ity of the task might have contributed to their overwhelming performances, the

results highlight the considerable potential of BO-based policy search algorithms

1https://spinningup.openai.com/en/latest/spinningup/bench.html
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Figure 4.3: (a) Best-found return (averaged over 5 episodes) v.s. the total number
of steps of the robot in the environment (averaged over 30 random initializations)
using the Swimmer-v2 task. The BO-BOS algorithm is run with different values
of N (the maximum number of epochs) and γ (the discount factor). (b) Best-
found validation error of XGBoost v.s. run-time (averaged over 30 random
initializations), obtained using joint hyperparameter tuning and feature selection.

for RL. Note that following the common practice in RL, Fig. 4.3a is presented in

terms of the total number of steps instead of run-time; we believe the additional

computation required by BOS can be easily overshadowed in large-scale RL

tasks, as demonstrated in the previous experiments. Most modern RL algorithms

rely on enormous number of samples, making their applications problematic

when sample efficiency is of crucial importance (Arulkumaran et al., 2017).

As shown above, BO-BOS achieves significantly better results than popular

deep RL algorithms while at the same time being far more sample-efficient,

thus potentially offering practitioners a practically feasible option in solving

large-scale RL problems.

4.5.3.2 Joint Hyperparameter Tuning and Feature Selection

Beside hyperparameter tuning, feature selection is another important pre-

processing step in ML, to lower computational cost and boost model performance

(Hall, 2000). There are two types of feature selection techniques: filter and

wrapper methods; the wrapper methods, such as forward selection (which starts

with an empty feature set and in each iteration greedily adds the feature with
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largest performance improvement), have been shown to perform well, although

computationally costly (Hall and Smith, 1999). Interestingly, as a result of the

sequential nature of wrapper methods, they can be naturally solved by BO-BOS

by simply replacing the sequential training of ML models with forward selection.

In this task, we tune four hyperparameters of the gradient boosting model

(XGBoost (Chen and Guestrin, 2016)) trained on an email spam dataset. We

additionally compare with Hyperband since it was previously applied to random

feature approximation in kernel methods (Li et al., 2017). As shown in Fig. 4.3b,

BO-BOS again delivers the best performance in this application. Consistent with

Fig. 7.2, the wall-clock time includes all the time incurred during the algorithms.

TheK1,t sequence is made smaller than before: K1,t = K1,t−1/0.99, because in

this setting, more aggressive early stopping is needed for BO-BOS to show its

advantage. Although Hyperband works well for random feature approximation

(Li et al., 2017), it does not perform favourably when applied to more structured

feature selection techniques. Both hyperparameter optimization and feature

selection have been shown to be effective for enhancing the performance of ML

models. However, performing either of them in isolation may lead to sub-optimal

performance since their interaction is un-exploited. Our results suggest that

BO-BOS can effectively improve the efficiency of joint hyperparameter tuning

and feature selection, making the combined usage of these two pre-processing

techniques a more practical choice.

4.6 Conclusion

In this work, we present a unifying framework, BO-BOS, that integrates BOS

into BO in a natural way, to derive a principled mechanism for optimally stopping

hyperparameter evaluations during BO. We analyze the regret of the algorithm,

and derive the BOS parameters that make the resulting BO-BOS algorithm
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no-regret. Applications of BO-BOS to hyperparameter tuning of ML models, as

well as two other novel applications, demonstrate the practical effectiveness of

the algorithm.
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Chapter 5

Federated Bayesian Optimization

This chapter is based on the following paper published at NeurIPS 2020:

Dai, Z., Low, B. K. H., & Jaillet, P. (2020). Federated Bayesian optimization via

Thompson sampling. In Proc. NeurIPS.

5.1 Introduction

Bayesian optimization (BO) has recently become a prominent method for opti-

mizing computationally costly black-box functions with no access to gradients,

such as hyperparameter tuning of deep neural networks (DNN) (Shahriari et al.,

2016). The rapidly growing computational capability of edge devices such as

mobile phones, as well as increasing concerns over data privacy, has given

rise to the widely celebrated paradigm of federated learning (FL) (McMahan

et al., 2017), also known as federated optimization (Li et al., 2020d). In FL,

individual agents, without transmitting their raw data, attempt to leverage the

contributions from the other agents to more effectively optimize the parameters of

their machine learning (ML) model (e.g., DNN) through first-order optimization

techniques (e.g., stochastic gradient descent) (Kairouz et al., 2019; Li et al.,

2019b). However, some common ML tasks such as hyperparameter tuning of
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DNN lack access to gradients and thus require zeroth-order optimization (i.e.,

black-box optimization), and a recent survey (Kairouz et al., 2019) pointed out

that hyperparameter optimization of DNN models in the FL setting is one of the

promising research directions for FL. This opportunity, combined with the proven

capability of BO to efficiently optimize computationally intensive black-box

functions (Shahriari et al., 2016), naturally suggests the potential of extending

BO to the FL setting, which we refer to as federated BO or FBO. Of note, to the

best of our knowledge, our work in this chapter represents the first attempt to

utilize zeroth-order information in the federated setting.

The setting of our FBO is similar to that of FL, except that FBO uses zeroth-

order optimization, in contrast to first-order optimization adopted in FL. In FBO,

every agent uses BO to optimize a black-box function (e.g., hyperparameter

optimization of a DNN model) and attempts to improve the efficiency of its

BO task by incorporating the information from other agents. The information

exchange between agents has to take place without directly transmitting the

raw data of their BO tasks (i.e., history of input-output pairs). A motivating

example is when a number of mobile phone users collaborate in optimizing the

hyperparameters of their separate DNN models used for next-word prediction

in a smart keyboard application, without sharing the raw data of their own

hyperparameter optimization tasks. This application cannot be handled by FL

due to the lack of gradient information, and thus calls for FBO. Note that the

generality of BO as a black-box optimization algorithm makes the applicability

of FBO extend beyond hyperparameter tuning of DNN on edge devices. For

example, hospitals can be agents in an FL system (Kairouz et al., 2019); when a

hospital uses BO to select the patients to perform a medical test (Yu et al., 2015),

FBO might be employed to help the hospital accelerate its BO task using the

information from other hospitals without requiring their raw data. An important

difference between FBO and FL is that FBO is more suitable for optimizing
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expensive-to-evaluate functions (e.g., hyperparameter optimization) for which

only a relatively small number of iterations is feasible, whereas FL usually

involves a large number of iterations. Despite its promising applications, FBO

faces a number of major challenges, some of which are only present in FBO,

while others plague the FL setting in general.

The first challenge, which arises only in FBO yet not FL, results from the

requirement for retaining (hence not transmitting) the raw data. In standard

FL, the transmitted information consists of the parameters of DNN (McMahan

et al., 2017), which reduces the risk of privacy violation compared to passing the

raw data. In BO, the information about a BO task is contained in the surrogate

model, which is used to model the objective function and hence guide the query

selection (Section 5.2). However, unlike DNN, the Gaussian process (GP)

model (Rasmussen and Williams, 2006), which is the most commonly used

surrogate model in BO, is nonparametric. Therefore, a BO task has no parameters

(except for the raw data of BO) that can represent the GP surrogate and thus be

exchanged between agents, while the raw data of BO should be retained and never

transmitted (Kusner et al., 2015). To overcome this challenge, we exploit random

Fourier features (RFF) (Rahimi and Recht, 2007) to approximate a GP using a

Bayesian linear regression model. This allows us to naturally derive parameters

that contain the information about the approximate GP surrogate and thus can be

communicated between agents without exchanging the raw data (Section 5.2).

In fact, with RFF approximation, the parameters to be exchanged in FBO are

equivalent to those of a linear model in standard FL (Section 5.3.2).

FBO also needs to handle some common challenges faced by FL in general: the

communication efficiency and heterogeneity of agents. Firstly, communication

efficiency is an important factor in the FL setting since a large number of

communicated parameters places a demanding requirement on the communication

bandwidth (Kairouz et al., 2019) and is alsomore vulnerable to potential malicious
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privacy attacks (Chang et al., 2019). To this end, we use Thompson sampling

(TS) (Thompson, 1933), which has been recognized as a highly effective practical

method (Chapelle and Li, 2011), to develop our FBO algorithm. The use of TS

reduces the required number of parameters to be communicated while maintaining

competitive performances (Section 5.3.2). Secondly, the heterogeneity of agents

is an important practical consideration in FL since different agents might have

highly disparate properties (Li et al., 2019b). In FBO, heterogeneous agents

represent those agents whose objective functions are significantly different from

that of the target agent (i.e., the agent performing BO). For example, the optimal

hyperparameters of the next-word prediction DNN model may vary significantly

across agents as a result of the distinct typing habits of different mobile phone

users. To address this challenge, we derive a theoretical convergence guarantee

for our algorithm which is robust against heterogeneous agents. In particular, our

algorithm is asymptotically no-regret even when some or all other agents have

highly different objective functions from the target agent.

In this work, we introduce the first algorithm for the FBO setting, federated

Thompson sampling (FTS), which is both theoretically principled and practically

effective. We provide a theoretical convergence guarantee for FTS that is robust

against heterogeneous agents (Section 5.4). We demonstrate the empirical

effectiveness of FTS in terms of communication efficiency, computational

efficiency and practical performance, using a landmine detection experiment and

two activity recognition experiments using Google glasses and mobile phone

sensors (Section 5.5).

5.2 Background and Problem Formulation
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5.2.1 Gaussian Processes with Random Fourier Features Ap-

proximation.

GPs are known to suffer from poor scalability (O(t3)) and thus calls for approx-

imation techniques. Bochner’s theorem states that any continuous stationary

kernel k (e.g., the SE kernel) can be expressed as the Fourier integral of a spectral

density p(s) (Rasmussen and Williams, 2006). As a result, random samples can

be drawn from p(s) to construct theM -dimensional (M ≥ 1) random features

φ(x),∀x ∈ X (Appendix B.1), whose inner product can be used to approxi-

mate the kernel values: k(x,x′) ≈ φ(x)>φ(x′), ∀x,x′ ∈ X (Rahimi and Recht,

2007). The approximation quality of this technique, referred to as random Fourier

features (RFF) approximation, is theoretically guaranteed with high probability:

supx,x′∈X |k(x,x′) − φ(x)>φ(x′)| ≤ ε, in which ε = O(M−1/2) (Rahimi and

Recht, 2007). Therefore, more random features (larger M ) results in a better

approximation (smaller ε). In this work, we focus on the widely used Squared

Exponential (SE) kernel.

A GP with RFF approximation can be interpreted as a Bayesian linear

regression model with φ(x) as the features: f̂(x) = φ(x)>ω. With the prior of

P(ω) = N (0, I) and given the set of observations Dt, the posterior distribution

of ω can be derived as:

P(ω|Φ(Xt),yt) = N (νt, σ
2Σ−1

t ), (5.1)

in which Φ(Xt) = [φ(x1), . . . ,φ(xt)]
> is a t ×M -dimensional matrix, yt =

[y(x1), . . . , y(xt)]
> is a t× 1 column vector, and

Σt = Φ(Xt)
>Φ(Xt) + σ2I, νt = Σ−1

t Φ(Xt)
>yt, (5.2)

which containM2 andM parameters respectively. As a result, we can sample a
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function f̃ from the approximate GP with RFF approximation by firstly sampling

ω̃ from the posterior (5.1), and then setting f̃(x) = φ(x)>ω̃,∀x ∈ X . Moreover,

Σt and νt (5.2) fully define the posterior predictive distribution of the approximate

GP at any input x, which is Gaussian-distributed with the mean and variance:

µ̂t(x) = φ(x)>νt, σ̂
2
t (x) = σ2φ(x)>Σ−1

t φ(x) (Appendix B.2).

5.2.2 Problem Setting of Federated Bayesian Optimization.

Assume that there areN+1 agents in the system: A andA1, . . . ,AN . For ease of

exposition, we focus on the perspective of A as the target agent, i.e., A attempts

to use the information from agents A1, . . . ,AN to accelerate its BO task. We

denoteA’s objective function as f and a sampled function fromA’s GP posterior

at iteration t as ft. We represent An’s objective function as gn, and a sampled

function from An’s GP posterior with RFF approximation as ĝn. We assume that

all agents share the same set of random features φ(x),∀x ∈ X , which is easily

achievable since it is equivalent to sharing the first layer of a neural network in FL

(Appendix B.1). For theoretical analysis, we assume that all objective functions

are defined on the same domain X ⊂ Rd, which is assumed to be discrete for

simplicity but our analysis can be easily extended to compact domain through

discretization (Chowdhury and Gopalan, 2017). A smoothness assumption

on these functions is required for theoretical analysis, so we assume that they

have bounded norm induced by the reproducing kernel Hilbert space (RKHS)

associated with the kernel k: ‖f‖k ≤ B and‖gn‖k ≤ B, ∀n = 1, . . . , N . This

further suggests that the absolute function values are upper-bounded: |f(x)| ≤ B

and |gn(x)| ≤ B, ∀x ∈ X . We denote the maximum difference between f

and gn as dn: dn = maxx∈X |f(x)− gn(x)|, which characterizes the similarity

between f and gn. A smaller dn implies that f and gn are more similar, and

heterogeneous agents are those whose dn’s are large. We use tn to denote number

of BO iterationsAn has completed (i.e., the number of observations ofAn) when
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it passes information to A; tn’s are constants unless otherwise specified.

5.3 Federated Bayesian Optimization (FBO)

5.3.1 Federated Thompson Sampling (FTS)

Before agent A starts to run a new BO task, it can request for information from

the other agents A1, . . . ,AN . Next, every agent An,∀n = 1, . . . , N uses its own

history of observations, as well as the shared random features (Section 5.2), to

calculate the posterior distribution N (νn, σ
2Σ−1

n ) (5.1), in which νn and Σn

represent An’s parameters of RFF approximation (5.2); next, An draws a sample

from the posterior distribution: ωn ∼ N (νn, σ
2Σ−1

n ), and then passes ωn (an

M -dimensional vector) to the target agentA (possibly via a central server). After

receiving the messages from other agents,A uses them to start the FTS algorithm

(Algorithm 5.1). To begin with, A needs to define (a) a monotonically increasing

sequence [pt]t≥1: pt ∈ (0, 1],∀t ≥ 1 and pt → 1 as t→ +∞, and (b) a discrete

distribution PN over the agents A1, . . . ,AN : PN [n] ∈ [0, 1],∀n = 1, . . . , N

and
∑N

n=1 PN [n] = 1. In iteration t ≥ 1 of FTS, with probability pt (line

4 of Algorithm 5.1), A samples a function ft using its current GP posterior

and chooses xt = arg maxx∈X ft(x); with probability 1− pt (line 6), A firstly

samples an agent An from PN , and then chooses xt = arg maxx∈X ĝn(x) where

ĝn(x) = φ(x)>ωn corresponds to a sampled function from the GP posterior of

An with RFF approximation. Next, xt is queried to produce y(xt), and FTS

proceeds to the next iteration t+ 1.

Interestingly, FTS (Algorithm 5.1) can be interpreted as a variant of TS

with a mixture of GPs. That is, in each iteration t, we firstly sample a GP: the

GP of A is sampled with probability pt, and the GP of An is sampled with

probability (1− pt)PN [n] for all n = 1, . . . , N . Next, we draw a function from

1βt will be defined in Theorem 5.1 in Section 5.4.
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Algorithm 5.1 Federated Thompson Sampling
1: for t = 1, 2, . . . , T do
2: Sample r from the Uniform distribution in [0, 1]: r ∼ U(0, 1)
3: if r ≤ pt then
4: Sample ft ∼ GP(µt−1(·), β2

t σ
2
t−1(·, ·)),1and choose xt =

arg maxx∈X ft(x)
5: else
6: Sample agent An from the distribution PN , and choose xt =

arg maxx∈X φ(x)>ωn
7: Query xt to observe y(xt), and update GP posterior with (xt, y(xt))

the sampled GP, whose maximizer is selected to query. As a result, xt follows

the same distribution as the maximizer of the mixture of GPs, and the mixture

model gradually converges to the GP of A as pt → 1. Furthermore, our FTS

algorithm also shares similarities with the work of Hoffman et al. (2011) which

has also proposed sampling an acquisition function from a mixture of acquisition

functions. The sequence [pt]t≥1 controls the degree to which the information

from the other agents is exploited, such that decreasing the value of this sequence

encourages the utilization of these information. The distribution PN decides

the preferences for different agents. A natural choice for PN is the uniform

distribution PN [n] = 1/N,∀n = 1, . . . , N indicating equal preferences for all

agents, which is a common choice when we have no knowledge regarding which

agents are more similar to the target agent. In FTS, stragglers2 can be naturally

dealt with by simply assigning 0 to the corresponding agentAn in the distribution

PN such that An is never sampled (line 6 of Algorithm 5.1). Therefore, FTS is

robust against communication failure which is a common issue in FL (Li et al.,

2020d).

Since only one message (ωn) is received from each agent before the beginning

of FTS, once an agent An is sampled and its message ωn is used (line 6 of

Algorithm 5.1), we remove it from PN by setting the corresponding element to 0,

and then re-normalize PN . However, FTS can be easily generalized to allowA to

2Stragglers refer to those agents whose information is not received by the target agent (Li
et al., 2020d).
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receive information from each agent after every iteration (or every few iterations),

such that every agent can be sampled multiple times. This more general setting

requires more rounds of communication. In practice, FTS is expected to perform

similarly in both settings when (a) the number of agentsN is large (i.e., a common

assumption in FL) and (b) PN gives similar or equal preferences to all agents,

such that the probability of an agent being sampled more than once is small.

Furthermore, this setting can be further generalized to encompass the scenario

where multiple (even all) agents are concurrently performing optimization tasks

using FTS. In this case, the information received from An can be updated as

An collects more observations, i.e., tn may increase as updated information is

received from An.

5.3.2 Comparison with Other BO AlgorithmsModified for the

FBO Setting

Although FTS is the first algorithm for the FBO setting, some algorithms for

meta-learning in BO, such as ranking-weighted Gaussian process ensemble

(RGPE) (Feurer et al., 2018) and transfer acquisition function (TAF) (Wistuba

et al., 2018), can be adapted to the FBO setting through a heuristic combination

with RFF approximation. Meta-learning aims to use the information from

previous tasks to accelerate the current task. Specifically, both RGPE and TAF

use a separate GP surrogate to model the objective function of every agent

(previous task), and use these GP surrogates to accelerate the current BO task.

To modify both algorithms to suit the setting of FBO, firstly, every agent An

applies RFF approximation to its own GP surrogate, and then passes the resulting

parameters νn and Σ−1
n (Section 5.2) to the target agent A. Next, after receiving

νn and Σ−1
n from the other agents, A can use them to calculate the approximate

GP surrogate of each agent (Section 5.2), which can then be plugged into the
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original RGPE/TAF algorithm.3 However, unlike FTS, RGPE and TAF are not

equipped with theoretical convergence guarantee, and thus lack an assurance

to guarantee consistent performances in the presence of heterogeneous agents.

Moreover, as we analyze below and will show in Section 5.5, FTS outperforms

both RGPE and TAF in a number of major aspects in our experiments, including

communication efficiency, computational efficiency and practical performance.

Firstly, regarding communication efficiency, both RGPE and TAF require νn

and Σ−1
n (M +M2 parameters) from each agent since both the posterior mean

and variance of every agent are needed. Moreover, TAF additionally requires the

incumbent (currently found maximum observation value) of every agent, which

could further increase the risk of privacy leak. In a given experiment and for a

fixedM , our FTS algorithm is superior in terms of communication efficiency

since it only requires anM -dimensional vector (ωn) from each agent, which is

equivalent to standard FL using a linear model withM parameters. Secondly, FTS

is also advantageous in terms of computational efficiency. When xt is selected

using ωn from an agent, FTS only needs to solve the optimization problem of

xt = arg maxx∈X φ(x)>ωn (line 6 of Algorithm 5.1), which incurs minimal

computational cost4; when xt is selected by maximizing a sampled function

from A’s GP posterior (line 4 of Algorithm 5.1), this maximization step can

also be approximated by RFF, which is also computationally cheap. In contrast,

for both RGPE and TAF, every evaluation of the acquisition function (which is

maximized to select xt) at an input x ∈ X requires calculating the posterior mean

and variance using the GP surrogate of every agent at x. Therefore, their required

computation in every iteration grows linearly in the number of agents (N ), and

thus can become prohibitive when N is large. We also empirically verify this in

our experiments (Fig. 5.3d in Section 5.5.2).

3Refer to (Feurer et al., 2018) and (Wistuba et al., 2018) for more details about RGPE and
TAF.

4We use the DIRECT method for this optimization problem, which takes on average 0.76
seconds per iteration (landmine detection experiment, Section 5.5.2).
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5.4 Theoretical Analysis

In our theoretical analysis, since we allow the presence of heterogeneous agents

(i.e., the other agents may have significantly different objective functions from

the target agent), we do not aim to show that FTS achieves a faster convergence

than standard TS, and instead prove a convergence guarantee that is robust against

heterogeneous agents. This is consistent with most works proving the convergence

of FL algorithms (Li et al., 2018, 2020d), and makes the theoretical results more

generally applicable since the presence of heterogeneous agents is a major and

inevitable challenge of FL and FBO. Note that we analyze FTS in the more

general setting, in which communication is allowed before every iteration instead

of only before the first iteration. However, as discussed in Section 5.3.1, FTS

behaves similarly in both settings in the common scenario when N is large and

PN assigns similar probabilities to all agents. Theorem 5.1 below is our main

theoretical result (proof in Appendix B.3).

Theorem 5.1. Denote by γt the maximum information gain about f from any

set of t observations. Let δ ∈ (0, 1), βt = B + σ
√

2(γt−1 + 1 + log(4/δ) and

ct = βt(1 +
√

2 log(|X |t2)) for t ≥ 1. Choose [pt]t≥1 as a monotonically

increasing sequence satisfying: pt ∈ (0, 1],∀t ≥ 1, pt → 1 as t → +∞, and

(1− pt)ct ≤ (1− p1)c1,∀t ≥ 2. For FTS, we have with probability of ≥ 1− δ

that5

RT = Õ
((
B + 1/p1

)
γT
√
T +

∑T

t=1
ψt

)
,

where ψt = 2(1−pt)
∑N

n=1 PN [n]∆n,t, and ∆n,t = Õ(M−1/2Bt2n+B+
√
γtn +

√
M + dn +

√
γt).

For the SE kernel which we focus on in this chapter, the first term in the upper

bound is sublinear in T since γT = O((log T )d+1) for the SE kernel (Srinivas

et al., 2010). Moreover, since the sequence of [pt]t≥1 is chosen to bemonotonically

5Õ ignores all logarithmic factors.
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increasing and goes to 1 when t→∞, 1−pt goes to 0 asymptotically. Therefore,

the second term in the upper bound also grows sublinearly.6 For example, if

[pt]t≥1 is chosen such that 1− pt = O(1/
√
t),
∑T

t=1 ψt = Õ(
√
T ). As a result,

FTS achieves no regret asymptotically regardless of the difference between the

target agent and the other agents, which is a highly desirable property for FBO in

which the heterogeneity among agents is a prominent challenge. Such a robust

regret upper bound is achieved because we upper-bound the worst-case error

for any set of agents (i.e., any set of values of dn and tn for n = 1, . . . , N ) in

the proof. The robust nature of the regret upper bound can be reflected in its

dependence on the sequence [pt]t≥1, as well as dn and tn. When the value of

the sequence [pt]t≥1 is small, i.e., when the information from the other agents

is exploited more (Section 5.3.1), the worst-case error due to more utilization

of these information is also increased. This is corroborated by Theorem 5.1

since smaller values of pt increase the regret upper bound through the terms

1/p1 and (1− pt) in ψt. Theorem 5.1 also shows that the regret bound becomes

worse with larger values of dn and tn, because a larger dn increases the difference

between the objective functions of An and A, and more observations from An (a

larger tn) also makes the upper bound looser since for a fixed dn, a larger number

of observations increases the worst-case error by accumulating the individual

errors7.

The dependence of the regret upper bound (through ∆n,t) on the number of

random features,M , is particularly interesting due to the interaction between two

opposing factors. Firstly, the termM−1/2Bt2n arises since better approximation

quality of the agent’s GP surrogates (i.e., largerM ) improves the performance.

However, the term
√
M suggests the presence of another factor with an opposite

6Recall we have mentioned in Section 2.2 that for the SE kernel, √γt in ∆n,t is logarithmic
in t: √γt = O((log t)(D+1)/2).

7In the most general setting whereAn may collect more observations between different rounds
of communication such that tn may increase (Section 5.3.1), 1− pt can decay faster to preserve
the no-regret convergence.
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effect. This results from the need to upper-bound the distance betweenωn (i.e., an

M -dimensional Gaussian random variable) and its mean νn (5.1), which grows

at a rate of O(
√
M) (Lemma B.3 in Appendix B.3). Taking the derivative of

both terms w.r.t.M reveals that the regret bound is guaranteed to become tighter

with increasingM (i.e., the effect of the termM−1/2Bt2n is more dominant) when

tn is sufficiently large, i.e., when tn = Ω(
√
M/B). An intuitive explanation

of this finding, which is verified in our experiments (Section 5.5.1), is that the

positive effect (i.e., tighter regret bound) of better RFF approximation (larger

M ) is amplified when more observations are available (i.e., tn is large). In

contrast, when tn is small, minimal information is offered by agent An and

thus increasing the quality of RFF approximation only leads to marginal or

negligible improvement in the performance. The practical implication of this

insight is that when the other agents only have a small number of observations, it

is not recommended to use a large number of random features since it requires a

larger communication bandwidth (Section 5.3.2) yet is unlikely to improve the

performance.

5.5 Experiments and Discussion

We firstly use synthetic functions to investigate the behavior of FTS. Next, using

3 real-world experiments, we demonstrate the effectiveness of FTS in terms of

communication efficiency, computational efficiency and practical performance.

Since it has been repeatedly observed that the theoretical choice of βt that is used

to establish the confidence interval is overly conservative (Bogunovic et al., 2018;

Srinivas et al., 2010), we set it to a constant: βt = 1.0. As a result, ct (Theorem5.1)

grows slowly (logarithmic) and thus we do not explicitly check the validity of the

condition (1−pt)ct ≤ (1−p1)c1,∀t ≥ 2. All error bars represent standard errors.

For simplicity, here we focus on the simple setting where communication happens
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only before the beginning of FTS (Section 5.3.1). However, in Appendix B.4.2.1,

we also evaluate our performance in the most general setting where the other

agents are also performing optimization tasks such that they may collect more

observations between different rounds of communication (i.e., tn is increasing).

The results (Fig. B.1 in Appendix B.4.2.1) show consistent performances of

FTS in both settings. More experimental details and results are deferred to

Appendix C.2 due to space constraint.

5.5.1 Optimization of Synthetic Functions

In synthetic experiments, the objective functions are sampled from a GP (defined

on a 1-D discrete domain within [0, 1]) using the SE kernel and scaled into the

range [0, 1]. We fix the total number of agents asN = 50, and vary dn, tn andM to

explore their impacts on the performance. We use the same dn and tn for all agents

for simplicity. We choose PN to be uniform: PN [n] = 1/N,∀n = 1, . . . , N , and

choose the sequence [pt]t≥1 as: pt = 1− 1/
√
t,∀t ≥ 2 and p1 = p2. Figs. D.1a

and b show that when dn = 0.02 is small, FTS is able to perform better than

TS. Intuitively, the performance advantage of FTS results from its ability to

exploit the additional information from the other agents to reduce the need

for exploration. These results also reveal that when tn of every agent is small

(Fig. D.1a), the impact ofM is negligible; on the other hand, when tn is large

(Fig. D.1b), increasingM leads to evident improvement in the performance. This

corroborates our theoretical analysis (Section 5.4) stating that when tn is large,

increasing the value ofM is more likely to tighten the regret bound and hence

improve the performance. Moreover, comparing the green curves in Figs. D.1a

and b shows that when the other agents’ objective functions are similar to the target

agent’s objective function (i.e., dn = 0.02 is small) and the RFF approximation is

accurate (i.e.,M = 100 is large), increasing the number of observations from the

other agents (tn = 100 vs. tn = 40) improves the performance. Lastly, Fig. D.1c
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(a) (b) (c)

Figure 5.1: Simple regret in synthetic experiments, showing the impact ofM
when tn is (a) small and (b) large, and (c) the performance when dn = 1.2 is
large. Each curve is averaged over 5 randomly sampled functions from a GP, and
5 random initializations of 1 input for each function.

verifies FTS’s theoretically guaranteed robustness against heterogeneous agents

(Section 5.4), since it shows that even when all other agents are heterogeneous

(i.e., every dn = 1.2 is large), the performances of FTS are still comparable to

that of standard TS. Note that Fig. D.1c demonstrates a potential limitation of our

method, i.e., in this scenario of heterogeneous agents, FTS may converge slightly

slower than TS if pt does not grow sufficiently fast. However, the figure also

shows that making pt grow faster (red curve), i.e., making the impact of the other

agents decay faster, allows FTS to match the performance of TS in this adverse

scenario.

5.5.2 Real-world Experiments

For real-world experiments, we use 3 datasets generated in the federated setting

which naturally contain heterogeneous agents (Smith et al., 2017). Firstly, we

use a landmine detection dataset in which the landmine fields are located at

two different terrains (Xue et al., 2007). Next, we use two activity recognition

datasets collected using Google glasses (Rahman et al., 2015) and mobile phone

sensors (Anguita et al., 2013), both of which contain heterogeneous agents

since cross-subject heterogeneity has been a major challenge for human activity

recognition (Rahman et al., 2015). We compare our FTS algorithm with standard

TS (i.e., no communication with other agents), RGPE and TAF. Note that RGPE
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and TAF are meta-learning algorithms for BO, and are hence not designed for

the FBO setting (Section 5.3.2).

Landmine Detection. This dataset includes 29 landmine fields. For each

field, every entry in the dataset consists of 9 features and a binary label indicating

whether the corresponding location contains landmines. The task of every field

is to tune 2 hyperparameters of an SVM classifier (RBF kernel parameter in

[0.01, 10] and L2 regularization parameter in [10−4, 10]) that is used to predict

whether a location contains landmines. We fix one of the landmine fields as the

target agent and the remaining N = 28 fields as the other agents, each of which

has completed a BO task of tn = 50 iterations.

Activity Recognition Using Google Glasses. This dataset contains sensor

measurements fromGoogle glasses worn by 38 participants. Every agent attempts

to use 57 features, which we extracted from the corresponding participant’s

measurements, to predict whether the participant is eating or performing other

activities. Every agent uses logistic regression (LR) for activity prediction, and

needs to tune 3 hyperparameters of LR: batch size ([20, 60]), L2 regularization

parameter ([10−6, 1]) and learning rate ([0.01, 0.1]). We fix one of the participants

as the target agent and all other N = 37 participants as the other agents, each

possessing tn = 50 BO observations.

Activity Recognition Using Mobile Phone Sensors. This dataset consists

of mobile phone sensor measurements from 30 subjects performing 6 activities.

Each agent attempts to tune the hyperparameters of a subject’s activity prediction

model, whose input includes 561 features and output is one of the 6 activity

classes. The activity prediction model and tuned hyperparameters, as well as

their ranges, are the same as the Google glasses experiment. We again fix one of

the subjects as the target agent, and all other N = 29 subjects as the other agents

with tn = 50 observations each.

For all experiments, we set PN to be uniform: PN [n] = 1/N,∀n = 1, . . . , N ,
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(a) (b) (c)

Figure 5.2: Best performance after 50 iterations (vertical) vs. the length of
the message (i.e., the number of parameters) communicated from each agent
(horizontal) for the (a) landmine detection, (b) Google glasses and (c) mobile
phone sensors experiments. Themore to the bottom left, the better the performance
and the less the required communication. The results for every method correspond
toM = 50, 100, 150, 200 respectively. Every result is averaged over 6 different
target agents, and each target agent is averaged over 5 different initializations of 3
randomly selected inputs.

(a) (b) (c) (d)

Figure 5.3: Best performance observed vs. run time (seconds) for the (a) landmine
detection, (b) Google glasses and (c) mobile phone sensors experiments, in which
FTS converges faster than other methods. These results correspond to the first (of
the 6) target agent used in each experiment in Fig. 5.2 withM = 100, averaged
over 5 random initializations of 3 inputs.8 Every method is run for 50 iterations.
(d) Total runtime vs. the number of agents for the landmine detection experiment.
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and pt = 1 − 1/t2 for t ≥ 2 and p1 = p2. We use validation error as the

performance metric for the two activity recognition experiments, and use Area

Under the Receiver Operating Characteristic Curve (AUC) to measure the

performance of the landmine detection experiment since this dataset is extremely

imbalanced (i.e., only 6.2% of all locations contain landmines). We repeat every

experiment 6 times, every time treating one of the first 6 agents as the target agent.

Fig. 5.2 shows the (averaged) best performance after 50 iterations of different

methods (vertical axis), as well as their required number of parameters to be

passed from each agent (horizontal axis). FTS outperforms both RGPE and TAF

in terms of both the performance metric and the communication efficiency. Note

that this comparison is unfair for FTS, since FTS is much more computationally

efficient than RGPE and TAF (Section 5.3.2) such that it completes 50 iterations

in significantly shorter time (Fig. 5.3). Fig. 5.3 plots the best performance

achieved vs. the run time of different algorithms with the first agent treated as

the target agent (refer to Appendix B.4.2.3 for the results of the other agents8).

Fig. 5.3 shows that FTS achieves the fastest convergence among all methods, and

showcases the advantage of FTS over RGPE and TAF in terms of computational

efficiency (Section 5.3.2). Overall, the consistent performance advantage of FTS

across all real-world experiments is an indication of its practical robustness,

which might be largely attributed to its robust theoretical convergence guarantee

ensuring its consistent performance even in the presence of heterogeneous agents

(Section 5.4). Furthermore, we also use the landmine detection experiment to

illustrate the scalability of our method w.r.t. the number of agents N . The results

(Fig. 5.3d) show that increasing N has minimal impact on the runtime of FTS

yet leads to growing computational cost for RGPE and TAF. This verifies the

relevant discussion at the end of Section 5.3.2.
8We can not average the results across different agents since the output scales of different

agents vary significantly.
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5.6 Conclusion

In this work, we have introduced the first algorithm for the FBO setting, FTS,which

addresses some key challenges in FBO in a principled manner. We theoretically

show its convergence guarantee which is robust against heterogeneous agents, and

empirically demonstrate its communication efficiency, computational efficiency

and practical effectiveness using three real-world experiments.
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Chapter 6

Differentially Private Federated

Bayesian Optimization

This chapter is based on the following paper published at NeurIPS 2021:

Dai, Z., Low, B. K. H., & Jaillet, P. (2021). Differentially Private Federated

Bayesian Optimization with Distributed Exploration. In NeurIPS-21.

6.1 Introduction

In the previous chapter (Chapter 5), we have extended BO into the federated

learning (FL) setting, to derive the federated Thompson sampling (FTS) algorithm

for the federated BO (FBO) setting (Dai et al., 2020b). An important consideration

in FL has been a rigorous protection of the privacy of the users/agents, i.e., how to

guarantee that by participating in a FL system, an agent would not reveal sensitive

information about itself (Kairouz et al., 2019). Furthermore, incorporating a

rigorous privacy preservation into BO has recently attracted increasing attention

due to its importance to real-world BO applications (Kharkovskii et al., 2020;

Kusner et al., 2015; Nguyen et al., 2018; Zhou and Tan, 2020). However, our

FTS algorithm (Chapter 5), which is the state-of-the-art algorithm for the FBO
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setting (Dai et al., 2020b), is not equipped with a privacy guarantee and hence

lacks a rigorous protection of the sensitive information of the agents.

Differential privacy (DP) (Dwork et al., 2014) provides a rigorous privacy

guarantee for data release and has become the state-of-the-art method for designing

privacy-preserving ML algorithms (Ji et al., 2014). Recently, DP has been

applied to the iterative training of DNN using stochastic gradient descent

(DP-SGD) (Abadi et al., 2016) and the FL algorithm of federated averaging (DP-

FedAvg) (McMahan et al., 2018b), which have achieved competitive performances

(utility) with a strong privacy guarantee. Notably, these methods have followed

a general framework for adding DP to generic iterative algorithms (McMahan

et al., 2018a) (referred to as the general DP framework hereafter), which applies

a subsampled Gaussian mechanism (Section 6.2) in every iteration. For an

iterative algorithm (e.g., FedAvg) applied to a database with multiple records

(e.g., data from multiple users), the general DP framework (McMahan et al.,

2018a) can hide the participation of any single record in the algorithm in a

principled way. For example, DP-FedAvg (McMahan et al., 2018b) guarantees

that an adversary, even with arbitrary side information, cannot infer whether the

data from a particular user has been used by the algorithm, hence preserving

user-level privacy. Unfortunately, our FTS algorithm (Chapter 5) is not amenable

to a straightforward integration of the general DP framework (McMahan et al.,

2018a) (Section 6.3.1). So, we modify FTS to be compatible with the general

DP framework and hence introduce the DP-FTS algorithm to preserve user-level

privacy in the FBO setting. In addition to the challenge of accounting for our

modifications of FTS to integrate DP in our theoretical analysis, we have to

ensure that DP-FTS preserves the practical performance advantage (utility) of

FTS. To this end, we leverage the ability of the general DP framework to handle

different parameter vectors (McMahan et al., 2018a), as well as the method of

local modeling for BO, to further improve the practical performance (utility) of
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DP-FTS.

Note that FTS, aswell as DP-FTS, is able to achieve better performance (utility)

than standard TS by accelerating exploration using the information from the other

agents (aggregated by the central server) (Chapter 5). That is, an agent using

FTS/DP-FTS benefits from needing to perform less exploration in the early stages.

To improve the utility of DP-FTS even more, we further accelerate exploration in

the early stages using our proposed distributed exploration technique which is

an elegant combination of local modeling for BO and the ability of the general

DP framework to handle different parameter vectors. Specifically, we divide the

entire search space into smaller local sub-regions and let every agent explore

only one local sub-region at initialization. As a result, compared with the

entire search space, every agent can explore the local sub-region more effectively

because its GP can model the objective function more accurately in a smaller

local sub-region (Eriksson et al., 2019). Subsequently, in every BO iteration, the

central server aggregates the information (vector) for every sub-region separately:

For a sub-region, the aggregation (i.e., weighted average) gives more emphasis

(i.e., weights) to the information (vectors) from those agents who are assigned to

explore this particular sub-region. Interestingly, this technique can be seamlessly

integrated into the general DP framework due to its ability to process different

parameter vectors (i.e., one vector for every sub-region) while still preserving

the interpretation as a single subsampled Gaussian mechanism (McMahan et al.,

2018a) (Section 6.3.3).1 As a result, the information aggregated by the central

server can help the agents explore every sub-region (hence the entire search

space) more effectively in the early stages and thus significantly improve the

practical convergence (utility), as demonstrated in our experiments (Section 6.5).

We refer to the resulting DP-FTS algorithm with distributed exploration (DE) as

DP-FTS-DE. Note that DP-FTS is a special case of DP-FTS-DE with only one

1By analogy, the vectors for different sub-regions in our algorithm play a similar role to the
parameters of different layers of a DNN in DP-FedAvg (McMahan et al., 2018b).
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sub-region (i.e., entire search space). So, we will refer to DP-FTS-DE as our

main algorithm in the rest of this chapter.

In this chapter, we introduce the differentially private FTS with DE (DP-

FTS-DE) algorithm (Section 6.3) which is the first algorithm with a rigorous

guarantee on the user-level privacy in the FBO setting. In particular, DP-FTS-DE

guarantees that an adversary cannot infer whether an agent has participated in

the algorithm, hence assuring every agent that its participation will not reveal its

sensitive information.2 We provide theoretical guarantees for both the privacy

and utility of DP-FTS-DE, which combine to yield a number of elegant theoretical

insights about the privacy-utility trade-off (Section 6.4). Next, we empirically

demonstrate that DP-FTS-DE delivers an effective performance with a strong

privacy guarantee and induces an interesting trade-off between privacy and utility

in real-world applications (Section 6.5).

6.2 Background and Problem Formulation

6.2.1 Federated Bayesian Optimization

The setting of FBO we focus on in this chapter is the same as the one in

Chapter 5 (Section 5.2.2), and we make some changes to the notations here for

convenience. Specifically, FBO involves N agents A1, . . . ,AN . Every agent

An attempts to maximize its objective function fn : X → R, i.e., to find

xn,∗ ∈ arg maxx∈X f
n(x), by querying input xnt and observing noisy output

ynt ,∀t = 1, . . . , T .3 Without loss of generality, our theoretical analyses mainly

focus on the perspective of agent A1. That is, we derive an upper bound on the

cumulative regret of A1: R1
T ,

∑T
t=1(f 1(x1,∗) − f 1(x1

t )) in Section 6.4. We

2Following that of McMahan et al. (2018b), we assume the central server is trustworthy.
3Note that the notations in Chapter 5 are slightly different: In Chapter 5, there are in total

N + 1 agents consisting of a target agent and N other agents, whose objective functions are
denoted by f , and gn,∀n = 1, . . . , N , respectively.
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characterize the similarity betweenA1 andAn by dn , maxx∈X |f 1(x)−fn(x)|

such that d1 = 0 and a smaller dn indicates a larger degree of similarity between

A1 and An. Following Chapter 5, we assume that all participating agents share

the same set of random features φ(x),∀x ∈ X . In our theoretical analysis,

we assume that all objective functions have a bounded norm induced by the

reproducing kernel Hilbert space (RKHS) associated with the kernel k, i.e.,

‖fn‖k ≤ B, ∀n = 1, . . . , N .

6.2.2 Differential Privacy

Differential Privacy (DP) provides a rigorous framework for privacy-preserving

data release (Dwork et al., 2006b). Consistent with that of McMahan et al.

(2018b), we define two datasets as adjacent if they differ by the data of a single

user/agent, which leads to the definition of user-level DP:

Definition 6.1 (User-level DP). A randomized mechanismM : D → R satisfies

(ε, δ)-DP if for any two adjacent datasets D1 and D2 and any subset of outputs

S ⊂ R,

P(M(D1) ∈ S) ≤ eε P(M(D2) ∈ S) + δ .

Here, ε and δ are DP parameters such that the smaller they are, the better the

privacy guarantee. Intuitively, user-level DP ensures that adding or removing

any single user/agent from the algorithm has an imperceptible impact on the

output of the algorithm. The DP-FedAvg algorithm (McMahan et al., 2018b)

has incorporated user-level DP into the FL setting by adopting a general DP

framework (McMahan et al., 2018a). In DP-FedAvg, the central server applies

a subsampled Gaussian mechanism to the vectors (gradients) received from

multiple agents in every iteration t:

1. Select a subset of agents by choosing every agent with a fixed probability q,
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2. Clip the vector ωn,t from every selected agent n such that its L2 norm is

upper-bounded by S, and

3. Add a Gaussian noise (with a variance proportional to S2) to the weighted

average of the clipped vectors.

The central server then broadcasts the vector produced by step 3 to all agents. As

a result of the general DP framework, they are able to not only provide a rigorous

privacy guarantee, but also use the moments accountant method (Abadi et al.,

2016) to calculate the privacy loss.4 More recently, the work of McMahan et al.

(2018a) has formalized the methods used by Abadi et al. (2016) and McMahan

et al. (2018b) as a general DP framework that is applicable to generic iterative

algorithms. Notably, the general DP framework (McMahan et al., 2018a) can

naturally process different parameter vectors (e.g., parameters of different layers

of a DNN), which is an important property that allows us to integrate distributed

exploration (Section 6.3.2) into our algorithm.

6.3 Differentially Private Federated Thompson

Sampling with Distributed Exploration

In this section, we will first introduce how we modify the FTS algorithm

to integrate DP to derive the DP-FTS algorithm (Section 6.3.1). Then, in

Section 6.3.2, we will describe distributed exploration which can be seamlessly

integrated into DP-FTS to further improve utility. Lastly, we will present the

complete DP-FTS-DE algorithm (Section 6.3.3).

4Given a fixed δ, the privacy loss is defined as an upper bound on the value of ε calculated by
the moments accountant method.
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Figure 6.1: DP-FTS algorithm (without distributed exploration).

6.3.1 Differentially Private Federated Thompson Sampling

(DP-FTS)

The original FTS algorithm (Dai et al., 2020b) (Algorithm 5.1 in Chapter 5)

is not amenable to a straightforward integration of the general DP framework

(Section 6.2.2). So, we modify FTS by (a) adding a central server for performing

the privacy-preserving transformations, and (b) passing a single aggregated vector

(instead of one vector from every agent) to the agents. Fig. 6.1 illustrates our

DP-FTS algorithm which is obtained by integrating the general DP framework

into modified FTS. Every iteration t of DP-FTS consists of the following steps:

1O and 2O (by Agents): Every agent An samples a vector ωn,t (5.1) using its

own current history of t input-output pairs (step 1O) and sends ωn,t to the central

server (step 2O).

3O and 4O (by Central Server): Next, the central server processes the received

vectors ωn,t,∀n = 1, . . . , N using a subsampled Gaussian mechanism (step 3O):

It (a) selects a subset of agents St by choosing each agent with probability q, (b)

clips the vector of every selected agent ωn,t, ∀n ∈ St such that its L2 norm is

upper-bounded by S, and (c) calculates a weighted average of the clipped vectors

using weights {ϕn,∀n = 1, . . . , N}, and adds to it a Gaussian noise. The final

vector ωt is then broadcast to all agents (step 4O).
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5O (by Agents): After an agent An receives the vector ωt from the central

server, it can choose the next query xnt+1 (step 5O): With probability pt+1 ∈ (0, 1],

An chooses xnt+1 using standard TS by firstly sampling a function fnt+1 from

its own GP posterior and then choosing xnt+1 = arg maxx∈X f
n
t+1(x); with

probability 1− pt+1, An chooses xnt+1 using ωt received from the central server:

xnt+1 = arg maxx∈X φ(x)>ωt. Consistent with Chapter 5 (Section 5.3.1), [pt]t∈Z+

is chosen as a monotonically increasing sequence such that pt ∈ (0, 1],∀t and

pt → 1 as t→∞.

After choosing xnt+1 and observing ynt+1, An adds (xnt+1, y
n
t+1) to its history

and samples a new vector ωn,t+1 (step 1O). Next, An sends ωn,t+1 to the central

server (step 2O), and the algorithm is repeated. The detailed algorithm will

be presented in Section 6.3.3 since DP-FTS is equivalent to the DP-FTS-DE

algorithm with P = 1 sub-region.

6.3.2 Distributed Exploration (DE)

To accelerate the practical convergence (utility) of DP-FTS (Section 6.3.1), we

introduce the DE technique to further accelerate the exploration in the early

stages (Section 6.1). At the beginning of a BO algorithm, a small number of

initial points are usually selected from the entire domain using an exploration

method (e.g., random search) to warm-start BO. We use DE to allow every agent

to explore a smaller local sub-region at initialization, which is easier to model for

the GP surrogate (Eriksson et al., 2019), and leverage the ability of the general

DP framework to handle different parameter vectors (McMahan et al., 2018a) to

integrate DE into DP-FTS in a seamless way.

Specifically, we partition the input domain X into P ≥ 1 disjoint sub-regions:

X1, . . . ,XP such that ∪i=1,...,PXi = X and Xi∩Xj = ∅,∀i 6= j. At initialization,

we assign every agentAn to explore (i.e., choose the initial points randomly from)
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a particular sub-region Xin .5 Note that if an agent An is assigned to explore

a sub-region Xin (instead of exploring the entire domain), its vector ωn,t (5.1)

sent to the central server is more informative about its objective function in

this sub-region Xin .6 As a result, for a sub-region Xi, the vectors from those

agents exploring Xi contain information that can help better explore Xi. So, we

let the central server construct a separate vector ω(i)
t for every sub-region Xi

and when constructing ω(i)
t , give more weights to the vectors from those agents

exploring Xi because they are more informative about Xi. Consequently, the

central server needs to construct P different vectors {ω(i)
t ,∀i = 1, . . . , P} with

each ω(i)
t using a separate set of weights {ϕ(i)

n ,∀n = 1, . . . , N}. Interestingly,

from the perspective of the general DP framework (McMahan et al., 2018a), the

different vectors {ω(i)
t ,∀i = 1, . . . , P} can be interpreted as analogous to the

parameters of different layers of a DNN and can thus be naturally handled by the

general DP framework. After receiving the P vectors from the central server, as

illustrated in Fig. 6.2b, every agent uses ω(i)
t to reconstruct the sampled function

in the sub-region Xi: f̃t(x) = φ(x)>ω
(i)
t ,∀x ∈ Xi, and then (with probability

1 − pt) chooses the next query by maximizing the sampled functions from all

sub-regions; see more details in Section 6.3.3.

After initialization, every agent is allowed to query any input in the entire

domain X regardless of the sub-region it is assigned to. So, as t becomes

larger, every agent is likely to have explored (and become informative about)

more sub-regions in addition to the one it is assigned to. In this regard, for

every sub-region Xi, we make the set of weights {ϕ(i)
n ,∀n = 1, . . . , N} adaptive

such that they gradually become uniform among all agents as t becomes large.

The dependence of the weights on t only requires minimal modifications to the

algorithm and the theoretical results. So, we drop this dependence to simplify

5For simplicity, we choose the sub-regions to be hyper-rectangles with equal volumes and
assign an approximately equal number of agents (≈ N/P ) to explore every sub-region.

6This is because its GP surrogate can model the objective function in this local sub-region
more accurately (Eriksson et al., 2019).

70



6.3. DIFFERENTIALLY PRIVATE FEDERATED THOMPSON
SAMPLING WITH DISTRIBUTED EXPLORATION

notations.

6.3.3 DP-FTS-DE Algorithm

Algorithm 6.1 DP-FTS-DE (central server)
1: ωjoint

−1 = 0
2: for iterations t = 0, 1, 2, . . . , T do
3: for agents n = 1, 2, . . . , N in parallel do
4: ωn,t ← BO-Agent-An(t, ωjoint

t−1 ) 2O
5: ω

(i)
t = 0,∀i = 1, . . . , P

6: Choose a random subset St ⊂ {1, . . . , N} of agents
7: for sub-regions i = 1, 2, . . . , P do
8: for agents n ∈ St do

9: ω̂n,t = ωn,t

/
max

(
1,
‖ωn,t‖

2

S/
√
P

)
10: ω

(i)
t += (ϕ

(i)
n /q) ω̂n,t

11: ω
(i)
t += N

(
0, (zϕmaxS/q)

2I
)

12: Broadcast ωjoint
t = [ω

(i)
t ]i=1,...,P to all agents 4O

3O

Algorithm 6.2 BO-Agent-An(t, ωjoint
t−1 = [ω

(i)
t−1]i=1,...,P )

1: if t = 0 then
2: Randomly select and query Ninit initial points from sub-region Xin
3: else
4: With probability pt:
5: xnt = arg maxx∈X f

n
t (x),

6: With probability 1− pt:
7: xnt = arg maxx∈X φ(x)>ω

(i[x])
t−1 .7

8: Query xnt to observe ynt
9: Sample ωn,t and send it to central server 1O, 2O

5O

Our complete DP-FTS-DE algorithm after integrating DE (Section 6.3.2)

into DP-FTS (Section 6.3.1) is presented in Algorithm 6.1 (central server’s role)

and Algorithm 6.2 (agent’s role), with the steps in circle corresponding to those

in Fig. 6.1. DP-FTS-DE differs from DP-FTS in two major aspects: Firstly, at

initialization (t = 0), every agent only explores a local sub-region instead of the

entire domain (line 2 of Algorithm 6.2). Secondly, instead of a single vector ωt,

7i[x] represents the sub-region x is assigned to.
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Figure 6.2: Replacing steps 3O and 5O of DP-FTS (Fig. 6.1) with that in (a) and
(b) to derive the DP-FTS-DE algorithm (P = 2).

the central server produces and broadcasts P vectors {ω(i)
t ,∀i = 1, . . . , P} with

each vector ω(i)
t corresponding to a different sub-region Xi and using a different

set of weights {ϕ(i)
n ,∀n = 1, . . . , N}. Applying different transformations to

different vectors (e.g., parameters of different DNN layers) can be naturally

incorporated into the general DP framework (McMahan et al., 2018a). Different

transformations performed by our central server to produce P vectors can be

interpreted as a single subsampled Gaussian mechanism producing a single

joint vector ωjoint
t , [ω

(i)
t ]i=1,...,P , as illustrated in Fig. 6.2a. We will present the

transformations performed by the central server in DP-FTS-DE (lines 5-12 of

Algorithm 6.1) from this perspective.

Subsampling: To begin with, after receiving the vectors ωn,t’s from the

agents (lines 3-4 of Algorithm 6.1), the central server firstly chooses a random

subset of agents St by selecting each agent with probability q (line 6). Next, for

every selected agent n ∈ St, the central server constructs a P ×M -dimensional

joint vector: ωjoint
n,t , [Nϕ

(i)
n ωn,t]i=1,...,P .

Clipping: Subsequently, clip every selected vector ωn,t to obtain ω̂n,t

whose L2 norm is upper-bounded by S/
√
P (line 9). This is equivalent to

clipping the joint vector to obtain: ω̂joint
n,t , [Nϕ

(i)
n ω̂n,t]i=1,...,P , whose L2 norm is

bounded by
∥∥∥ω̂joint

n,t

∥∥∥
2
≤ (N2ϕ2

max

∑P
i=1

∥∥ω̂n,t∥∥2

2
)1/2 ≤ NϕmaxS where ϕmax ,

maxi=1,...,P,n=1,...,N ϕ
(i)
n .

Weighted Average: Next, calculate a weighted average of the clipped joint
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vectors by giving equal weights8 to all agents: ωjoint
t = (qN)−1

∑
n∈St ω̂

joint
n,t .9

Note that ωjoint
t results from the concatenation of the vectors from all sub-regions:

ωjoint
t = [ω

(i)
t ]i=1,...,P where

ω
(i)
t = (qN)−1

∑
n∈St Nϕ

(i)
n ω̂n,t = q−1

∑
n∈St ϕ

(i)
n ω̂n,t, (6.1)

which corresponds to line 10 of Algorithm 6.1.

Gaussian Noise: Finally, add to each element of ωjoint
t = [ω

(i)
t ]i=1,...,P a zero-

meanGaussian noisewith a standard deviation of z(NϕmaxS)/(qN) = zϕmaxS/q

(line 11).

Next, the output ωjoint
t = [ω

(i)
t ]i=1,...,P of the single subsampled Gaussian

mechanism is broadcast to all agents. After an agent An receives ωjoint
t , with

probability pt+1, An chooses the next query xnt+1 by maximizing a function fnt+1

sampled from its own GP posterior (line 5 of Algorithm 6.2); with probability

1− pt+1,An uses ωjoint
t = [ω

(i)
t ]i=1,...,P received from the central server to choose

xnt+1 by maximizing the reconstructed functions for all sub-regions (line 7 of

Algorithm 6.2), as illustrated in Fig. 6.2b. Finally, it queries xnt+1 to observe

ynt+1, samples a new vector ωn,t+1 and sends it to the central server (line 9 of

Algorithm 6.2), and the algorithm is repeated.

6.4 Theoretical Analysis

In this section, we will present the theoretical guarantees on both the privacy

(Section 6.4.1) and utility (Section 6.4.2) of our DP-FTS-DE algorithm, which

combine to yield some interesting insights about the privacy-utility trade-off

(Section 6.4.2).

8Note that this weight is only used for the purpose of interpretation and is different from the
weights ϕ(i)

n ’s used in our algorithm.
9The summation is divided by qN (i.e., expected number of agents selected) to make it

unbiased (McMahan et al., 2018b).
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6.4.1 Privacy Guarantee

Proposition 6.1 below formalizes our privacy guarantee:

Proposition 6.1. There exist constants c1 and c2 such that for fixed q and

T and any ε < c1q
2T, δ > 0, DP-FTS-DE (Algorithm 6.1) is (ε, δ)-DP if

z ≥ c2q
√
T log(1/δ)/ε.

Its proof (Appendix C.1.1) follows directly from Theorem 1 of Abadi et al.

(2016). Proposition 6.1 shows that a larger z (i.e., larger variance for Gaussian

noise), a smaller q (i.e., smaller expected number of selected agents) and a smaller

T (i.e., smaller number of iterations) all improve the privacy guarantee because

for a fixed δ, they all allow ε to be smaller.

6.4.2 Privacy-Utility Trade-off

Theorem 6.1 below (proved in Appendix C.1.2) shows an upper bound on the

cumulative regret of agent A1 running DP-FTS-DE:

Theorem 6.1. Let γt be the maximum information gain on f 1 from any set of

t observations, ε denote an upper bound on the approximation error of RFF

(Section 5.2), Ct , {n = 1, . . . , N
∣∣∥∥ωn,t∥∥2

> S/
√
P},∀t ∈ Z+, δ ∈ (0, 1).

Choose [pt]t∈Z+ as a monotonically increasing sequence satisfying 1 − pt =

O(1/t2). Then, with probability of at least 1− δ,10

R1
T = Õ

((
B + 1/p1

)
γT
√
T +

∑T
t=1ψt +B

∑T
t=1 ϑt

)

where ψt , Õ((1 − pt)Pϕmaxq
−1(∆t + zS

√
M)), ∆t ,

∑N
n=1 ∆n,t, ∆n,t ,

Õ(εBt2 +B +
√
M + dn +

√
γt), and ϑt , (1− pt)

∑P
i=1

∑
n∈Ct ϕ

(i)
n .

Note that all three terms in the regret upper bound grow sub-linearly in t: The

first term is sub-linear because γT = O((log T )d+1) for the SE kernel, and the

10Õ hides all logarithmic factors.
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second and third terms are both sub-linear since we have chosen 1−pt = O(1/t2).

As a result, our DP-FTS-DE algorithm preserves the no-regret property of the

original FTS algorithm (Dai et al., 2020b) (Chapter 5). That is, agentA1 achieves

no regret asymptotically even if all other agents are heterogeneous, i.e., even if

all other agents have significantly different objective functions fromA1. This is a

particularly desirable property because it ensures the robustness of DP-FTS-DE

against the heterogeneity of agents, which is an important challenge in both

FL and FBO (Dai et al., 2020b; Kairouz et al., 2019) and has also been an

important consideration for other works proving the theoretical convergence of

FL algorithms (Li et al., 2018, 2020d). Similar to Chapter 5, to prove this robust

regret upper bound, we have upper-bounded the worst-case error introduced by

the information from any set of agents, which explains the dependence of the

regret upper bound on dn and [pt]t∈Z+ . Specifically, larger dn’s indicate larger

differences between the objective functions of A1 and the other agents and hence

lead to a worse regret upper bound (through the term ψt). Smaller values of the

sequence [pt]t∈Z+ increase the utilization of the information from the other agents

(line 6 of Algorith 6.2), hence inflating the worst-case error resulting from these

information.

Theorem 6.1, when interpreted together with Proposition 6.1, also reveals

some interesting theoretical insights regarding the privacy-utility trade-off. Firstly,

a larger z (i.e., larger variance for Gaussian noise) improves the privacy guarantee

(Proposition 6.1) and yet results in a worse utility since it leads to a worse regret

upper bound (through ψt). Secondly, a larger q (i.e., more selected agents in each

iteration) improves the utility since it tightens the regret upper bound (by reducing

the value of ψt) at the expense of a worse privacy guarantee (Proposition 6.1).

A general guideline for choosing the values of z and q is to aim for a good

utility while ensuring that the privacy loss is within the single-digit range (i.e.,

< 10) (Abadi et al., 2016). The value of the clipping threshold S exerts no impact

75



6.4. THEORETICAL ANALYSIS

on the privacy guarantee. However, S affects the regret upper bound (hence the

utility) through two conflicting effects: Firstly, a smaller S reduces the value

of ψt and hence the regret bound. However, a smaller S is likely to enlarge the

cardinality of the set Ct, hence increasing the value of ϑt. Intuitively, a smaller S

impacts the performance positively by reducing the noise variance (line 11 of

Algorithm 6.1) and yet negatively by causing more vectors to be clipped (line 9

of Algorithm 6.1). A general guide on the selection of S is to choose a small

value while ensuring that a small number of vectors are clipped.

Regarding the dependence of the regret upper bound on the numberM of

random features, in addition to the dependence through ∆n,t which has been

analyzed in Chapter 5 (Section 5.4) (Dai et al., 2020b), the integration of DP

introduces another dependence that implicitly affects the privacy-utility trade-off.

Besides increasing the value of ψt, a largerM enlarges the value of ϑt as a larger

dimension for the vectors ωn,t’s is expected to increase their L2 norms, hence

increasing the cardinality of the set Ct and consequently the value of ϑt. So, the

additional dependence, which arises due to the integration of DP, loosens the

regret upper bound with an increasingM . As a result, ifM is larger, then we can

either sacrifice privacy to preserve utility by reducing z or increasing q (both of

which can counter the increase of ψt), or sacrifice utility to preserve privacy by

keeping z and q unchanged.

The number P of sub-regions also induces a trade-off about the performance

of our algorithm, which is partially reflected by Theorem 6.1. Specifically, the

regret bound depends on P through three terms. Two of the terms (i.e., P in

ψt and the summation of P terms in ϑt) arise due to the worst-case nature of

our regret upper bound, as discussed earlier: They cause the regret upper bound

to increase with P due to the accumulation of the worst-case errors resulting

from the P vectors: {ω(i)
t ,∀i = 1, . . . , P}. Regarding the third term (i.e., in the

definition of Ct), a larger value of P is expected to increase the cardinality of the
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set Ct (similar to the effect of a largerM discussed above), consequently loosening

the regret upper bound by inflating the value of ϑt. In this case, as described

above, we can choose to sacrifice either privacy or utility. On the other hand, a

larger value of P (i.e., larger number of sub-regions) can improve the practical

performance (utility) because it allows every agent to explore only a smaller

sub-region which can be better modeled by its GP surrogate (Section 6.3.2). As

a result of the worst-case nature of the regret upper bound mentioned earlier,

the latter positive effect leading to better practical utility is not reflected by

Theorem 6.1. Therefore, we instead verify this trade-off induced by P about the

practical performance in our experiments (Fig. C.3 in Appendix C.2.1).

6.5 Experiments

In all experiments, when calculating the privacy loss using moments accoun-

tant Abadi et al. (2016), we follow the practice of McMahan et al. (2018b) and

set δ = 1/N1.1. The requirement on the sequence [pt]t∈Z+ by Theorem 6.1 (i.e.,

1 − pt = O(1/t2)) is conservative in practice due to the worst-case nature of

the regret upper bound (Section 6.4.2). So, we choose 1− pt to decay slower in

our experiments. For every sub-region Xi, we choose the corresponding set of

weights such that ϕ(i)
n ∝ exp(a) for the agents exploring Xi and ϕ(i)

n ∝ exp(b) for

the other agents with a ≥ b > 0. To make the weights adaptive (Section 6.3.2),

we fix b and decay the value of a. Due to space constraints, some experimental

details are deferred to Appendix C.2.

6.5.1 Synthetic Experiments

In our synthetic experiments, we first sample a function from a GP with the SE

kernel, and then apply different small random perturbations to the values of the

sampled function to obtain the objective functions of N = 200 different agents.
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(a) (b)
Figure 6.3: (a) Benefit of distributed exploration (DE). (b) Impact of clipping
threshold S with q = 0.25, z = 1.0. Every curve results from averaging over
N = 200 agents s.t. each agent’s performance is further averaged over 5 runs with
different random initializations of size Ninit = 10. Error bars denote standard
errors.

We chooseM = 50 and 1− pt = 1/
√
t,∀t ∈ Z+.

We firstly demonstrate the performance advantage of modified FTS and

FTS-DE (without DP) over standard TS. As shown in Fig. 6.3a, FTS converges

faster than standard TS and more importantly, FTS-DE (Section 6.3.2) further

improves the performance of FTS considerably. Moreover, using a larger number

P of sub-regions (i.e., smaller sub-regions) brings more performance benefit.

This is consistent with our analysis of DE (Section 6.3.2) suggesting that smaller

sub-regions are easier to model for the GP surrogate and hence can be better

explored. Moreover, we have also verified that after the integration of DP,

DP-FTS-DE (P = 2) can still achieve significantly better convergence (utility)

than DP-FTS for the same level of privacy guarantee (Fig. C.1 in Appendix C.2.1).

These results justify the practical significance of our DE technique (Section 6.3.2).

We have also shown (Fig. C.2 in Appendix C.2.1) that both components in our

DE technique (i.e., letting every agent explore only a local sub-region and giving

more weights to those agents exploring the sub-region) are necessary for the

performance of DE.

Fig. 6.3b explores the impact of the clipping threshold S. From Fig. 6.3b, an

overly small S may hinder the performance since it causes too many vectors to

be clipped, and an excessively large S may also be detrimental due to increasing
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Figure 6.4: Privacy-utility trade-off: Privacy loss after T = 40 iterations are
5.93, 9.91, 20.12 for the respective q = 0.15, 0.25, 0.5 with (a) z = 1.0, S = 11,
and 9.91, 7.39, 5.22 for the respective z = 1.0, 1.2, 1.5with (b) q = 0.25, S = 11.

the variance of the added Gaussian noise. This corroborates our analysis in

Section 6.4.2. The value of S = 11, which delivers the best performance in

Fig. 6.3b, has been chosen such that only a small percentage (0.8%) of the vectors

are clipped. Fig. 6.4 shows the privacy-utility trade-off of our DP-FTS-DE

algorithm induced by q and z. The results verify our theoretical insights regarding

the impact of the parameters q and z on the privacy-utility trade-off (Section 6.4.2),

i.e., a larger q (smaller z) leads to a better utility at the expense of a greater

privacy loss.

6.5.2 Real-World Datasets

We perform experiments using three commonly used real-world datasets in FL

and FBO (Dai et al., 2020b; Smith et al., 2017). The first two experiments use the

same datasets and settings as those of the experiments on landmine detection and

human activity recognition using mobile phone sensors in Chapter 5. The third

experiment uses the images of handwritten characters byN = 50 persons (agents)

from the EMNIST dataset (i.e., a commonly used benchmark in FL) (Cohen

et al., 2017) and tunes 3 hyperparameters of a convolutional neural network used

for image classification. In all three experiments, we choose P = 4 sub-regions,

S = 22.0,M = 100, and 1− pt = 1/t,∀t ∈ Z+.

Figs. 6.5a,c,e plot the privacy (horizontal axis, more to the left is better)
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and utility (vertical axis, lower is better) after 60 iterations. The green dots

correspond to z = 1, 1.6, 2, 3, 4 (q = 0.35) and the red dots represent q =

0.1, 0.15, 0.2, 0.25, 0.35 (z = 1). Results show that with small privacy loss (i.e.,

in the single digit range), DP-FTS-DE is able to achieve a competitive performance

(utility) and significantly outperforms standard TS in most settings. The figures

also reveal a clear trade-off between privacy and utility, i.e., a smaller privacy

loss (more to the left) generally results in a worse utility (larger vertical value). In

addition, these two observations can also be obtained from Figs. 6.5b,d,f which

plot some convergence results:11 DP-FTS-DE and FTS-DE converge faster than

TS; a smaller privacy loss (i.e., larger z or smaller q) in general leads to a slower

convergence. Figs. 6.5a,c,e also justify the importance of DE (Section 6.3.2)

since FTS-DE (and some settings of DP-FTS-DE) significantly outperforms FTS

without DE in all three experiments. We also verify the importance of DE when

DP is integrated in Appendix C.2.2 (Fig. C.4). Lastly, our DP-FTS-DE can be

easily adapted to use Rényi DP (Wang et al., 2019)12, which, although requiring

modification to our theoretical analysis, offers slightly better privacy loss with

comparable performances (Fig. C.5 in Appendix C.2.2). Here, a better privacy

loss indicates that for a fixed δ, Rényi DP achieves a tighter upper bound on

the value of ε (note that the privacy loss is defined as an upper bound on ε as

described in footnote 4).

6.6 Conclusion

This chapter describes the first algorithm called DP-FTS-DE for the FBO setting

with a rigorous guarantee for user-level privacy. DP-FTS-DE is equipped with

theoretical guarantees for both the privacy and utility and amenable to theoretical

11Here, we only show the average performances without error bars because the agents in these
datasets are highly heterogeneous and thus have significantly different scales.

12We only need to modify step 6 of Algorithm 6.1 such that we randomly select a fixed number
of Nq agents in every iteration.
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Figure 6.5: (a,c,e) Privacy loss vs. performance after 60 iterations for landmine
detection, human activity recognition, and EMNIST. The more to the left (bottom),
the better the privacy (utility). (b,d,f) Convergence results for some settings in
each experiment. Results are averaged overN agents s.t. each agent’s performance
is further averaged over 10 diff. random initializations of size Ninit = 10.
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insights about the privacy-utility trade-off. In practice, DP-FTS-DE achieves a

competitive utility and demonstrates an interesting trade-off between privacy and

utility.
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Chapter 7

Robust Meta-Bayesian Optimization

This chapter is based on the following paper published at UAI 2022:

Dai, Z., Chen, Y., Yu, H., Low, B. K. H., & Jaillet, P. (2022). On Provably Robust

Meta-Bayesian Optimization.. In UAI-22.

7.1 Introduction

When using BO to optimize a target function, we sometimes have access to a set

of evaluations of some potentially related functions. For example, when using BO

for hyperparameter optimization of an ML model trained on a target dataset, we

often have access to some previously completed BO tasks using other potentially

related datasets (Golovin et al., 2017). These previous tasks, if similar to the

current task, may be exploited to accelerate the current BO task. However, if

some (or even all) previous tasks are in fact dissimilar to the current task, their

use may turn out to incorporate harmful information and hence sabotage the

convergence of BO (Feurer et al., 2018). This begs the question as to whether we

can leverage these previous tasks to improve the efficiency of the current BO task,

while ensuring robustness against these harmful dissimilar tasks such that (a)

they would not affect the no-regret convergence of BO, and (b) we can identify
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them and thus diminish their impact in a principled manner.

Exploiting previous learning experiences to improve the efficiency of the

current task is the goal of meta-learning (Vanschoren, 2018). Meta-learning is a

broad field with various applications in supervised learning (Finn et al., 2017),

RL (Xu et al., 2018), active learning (Pang et al., 2018), among others. The

major challenges in meta-learning include (a) the transfer of information from

previous tasks to the current task, and (b) characterization of task similarity

which is crucial for identifying harmful dissimilar tasks (Vanschoren, 2018).

The application of meta-learning to BO (or meta-BO) has been explored by

previous studies which differ in how these two challenges are addressed. Some

works, such as multitask BO (Swersky et al., 2013), transfer the information

from previous tasks by building a joint GP surrogate using the observations

from all previous and current tasks, with the task similarity either represented by

meta-features (Bardenet et al., 2013; Yogatama and Mann, 2014) or learned from

observations (Swersky et al., 2013;Wang et al., 2018) (Section 3.4). Multi-fidelity

BO methods (Kandasamy et al., 2016, 2017; Wu and Frazier, 2018; Zhang et al.,

2017) can also be applied to meta-BO by considering the previous tasks as lower-

fidelity observations and restricting online queries to only the target function.

These works, however, are limited by the scalability of GP due to including all

previous and current observations in a single GP (Feurer et al., 2018). To this

end, other recent works transfer information from previous tasks using a more

scalable approach: They build a separate GP surrogate for each individual task

and use a weighted combination of either the individual surrogate functions or

acquisition functions for query selection (Feurer et al., 2018; Wistuba et al., 2016,

2018). However, these works on scalable meta-BO do not provide a theoretical

performance guarantee to ensure robust performances in the presence of harmful

dissimilar tasks, and use heuristics to attempt to identify these dissimilar tasks.

If not handled in a principled manner, these dissimilar tasks might mislead the
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current BO algorithm by providing poisonous information, consequently resulting

in a suboptimal convergence.

This chapter presents a scalable, principled and robust meta-BO algorithm:

robust meta-GP-upper confidence bound (RM-GP-UCB). Like the works of Feurer

et al. (2018); Wistuba et al. (2016, 2018), we transfer information from previous

tasks by combining individual acquisition functions. In particular, we compute

the GP-UCB acquisition function for each individual task (including the previous

and current tasks) and employ a weighted combination of these acquisition

functions to select the next query. As a result, a separate GP surrogate is built for

each previous task, making RM-GP-UCB scale well in the number of meta-tasks

and observations in each meta-task. In stark contrast to the works of Feurer et al.

(2018); Wistuba et al. (2016, 2018), RM-GP-UCB achieves principled robustness

against harmful dissimilar tasks as a result of our two major contributions: RM-

GP-UCB (a) is endowed with a theoretical convergence guarantee that is robust

against dissimilar previous tasks, and (b) learns the task similarity to identify

dissimilar tasks in a principled way through online learning. Firstly, we derive

an upper bound on the regret of RM-GP-UCB and show that RM-GP-UCB is

asymptotically no-regret for any given set of previous tasks, i.e., without requiring

assumptions on the similarity between the previous and current tasks (Section 7.4).

This allows us to guarantee robust performances of RM-GP-UCB in a wide range

of applications, even when some or all previous tasks are significantly dissimilar

to the target task. Moreover, we also use our theoretical analysis to show that

when the meta-tasks are similar to the target task, they can help RM-GP-UCB

converge faster than GP-UCB at the initial stage by accelerating the exploration

process. Secondly, the theoretical guarantee allows us to learn the task similarity

(and hence identify dissimilar tasks) in a principled way, by minimizing the

upper bound on the regret of RM-GP-UCB via a computationally cheap online

learning algorithm known as Follow-The-Regularized-Leader (Section 7.5). We
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demonstrate in Section 7.6 that, as a result of its robust performance guarantee

and principled learning of task similarity, RM-GP-UCB performs effectively and

consistently across a number of interesting applications.

7.2 Formulation of Meta-Bayesian Optimization

We refer to the function f beingmaximized as the target function and the functions

fi for i = 1, . . . ,M of theM previous tasks as meta-functions. We use target

task/observations and meta-tasks/observations in a similar manner. All functions

are defined on the same domain X . We assume that f and all fi’s are sampled

from the same GP with kernel k. This assumption is justified in the sense that

the target function and meta-functions are assumed to be generated from the

same underlying phenomenon (e.g., performance of ML models trained using

the activity recognition data of different individuals), and thus have the same

degree of smoothness characterized by the kernel k. We also assume that all

meta- and target observations are corrupted by a Gaussian noise ε ∼ N (0, σ2)

with variance σ2. These two assumptions are in line with the work of Wang

et al. (2018) which has also performed theoretical analysis of a meta-learning

algorithm for BO (Section 3.4). The number of observations from meta-task i

is a constant denoted as Ni, and N , maxi=1,...,M Ni. xi,j and yi,j represent the

j-th input and noisy output of meta-task i respectively. We define the function

gap di , maxj=1,...,Ni

∣∣f(xi,j)− fi(xi,j)
∣∣ <∞ which represents the maximum

difference between the function values of f and fi at any corresponding input

xi,j of meta-task i. Note that for a given set of meta-observations for meta-task i,

the function gap di is an unknown constant characterizing the similarity between

meta-task i and the target task: a smaller function gap implies a stronger similarity.

Our algorithm is designed to be robust such that it performs effectively even when

some or all function gaps are large, therefore, we do not place assumptions on the
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(RM-GP-UCB)

magnitude of the functions gaps except that they are finite.

7.3 Robust Meta-Gaussian Process-Upper Confi-

dence Bound (RM-GP-UCB)

The acquisition function (7.1) adopted by RM-GP-UCB in iteration t is a weighted

combination ofM + 1 individual GP-UCB acquisition functions (Srinivas et al.,

2010) for the target task and theM meta-tasks, each of which is calculated using

the observations from a particular task:

ζt(x) , νt

[∑M

i=1
ωi
[
µi(x) +

√
τσi(x)

] ]
+ (1− νt)

[
µt−1(x) +

√
βtσt−1(x)

]
.

(7.1)

In (7.1), µt−1(x) and σt−1(x) represent, respectively, the GP posterior mean

and standard deviation (2.1) at x calculated using the target observations from

iterations 1 to t− 1. µi(x) and σi(x) are computed using all meta-observations

from meta-task i. βt > 0 and τ > 0 will be defined in Section 7.4. νt ∈ [0, 1] can

be interpreted as the overall weight given to all meta-tasks in iteration t and should

be chosen to be non-increasing in t, which enforces the impact of meta-tasks

in (7.1) to be non-increasing. The meta-weights ωi’s form a probability simplex

(all ωi ≥ 0 and
∑M

i=1 ωi = 1) and can be understood as the weights assigned to

individual meta-tasks. Note that since the dataset used to calculateµi(x) and σi(x)

is fixed with size Ni, the matrix inversion in (2.1) (i.e., computational bottleneck

for GP) can be pre-computed. So, after T iterations, RM-GP-UCB incurs O(T 3)

time for covariance matrix inversion (since only the target covariance matrix

of size T × T needs to be inverted) and O(MN2 + T 2) time during predictive

inference, which are less than the respectiveO((MN +T )3) andO((MN +T )2)

time incurred when all observations are included in a single GP. Hence, RM-GP-
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UCB is scalable in the number of meta-tasks and observations in each meta-task.

In iteration t (Algorithm 7.1), we first optimize the meta-weights and update

νt (Section 7.5.2). Next, input xt is selected by maximizing the acquisition

function (7.1), after which we query xt and use the newly collected input-output

pair (xt, yt) to update the GP posterior belief (2.1). Note that our acquisition

function (7.1) may be modified in practice to use a weighted combination of

other existing acquisition functions (e.g., expected improvement), however, our

theoretical results (Sections 7.4 and 7.5) would not hold anymore.

Algorithm 7.1 RM-GP-UCB
1: for t = 1, 2, . . . , T do
2: Update ωi for i = 1, . . . ,M via online meta-weight optimization and

update νt (more details on these updates are given in Section 7.5.2)
3: xt ← arg maxx∈D ζt(x) (7.1)
4: Query xt to observe yt, and update GP posterior belief (2.1) using (xt, yt)

7.4 Theoretical Analysis

Theorem 7.1 presents the main theoretical result of this work and its proof is

given in Appendix D.1:

Theorem 7.1. Let δ ∈ (0, 1). Suppose that RM-GP-UCB is run with the

following parameters: νt ∈ [0, 1] and νt+1 ≤ νt ∀t ≥ 1, τ , 2 log(3 |X |M/δ),

βt , 2 log(|X | t2π2/2δ) ∀t ≥ 1, ωi ≥ 0 for i = 1, . . . ,M and
∑

i=1,...,M ωi = 1.

Then, with probability of at least 1− δ,

RT ≤ 2(α +
√
τ)
∑T

t=1
νt +

√
C1T (1− νT )2βTγT ,

where C1 , 8
1+σ−2 , γT is the maximum information gain about f from observing

any set of T observations, α ,
∑M

i=1 ωiαi, and αi ,
Ni
σ2 (2
√
Ni

√
2σ2 log 6Ni

δ
+

di
√
Ni).
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If νt is designed according to Corollary 7.1 below, both terms in the regret

upper bound grow sublinearly, which suggests that RM-GP-UCB is asymptotically

no-regret for some commonly used kernels (Srinivas et al., 2010).

Corollary 7.1. If νt → 0 as t → ∞, then RM-GP-UCB achieves no regret

asymptotically for the Squared Exponential (SE) and Mátern kernels.1

Our theoretical results hold for a given set of meta-tasks with fixed yet

unknown di’s. Note that we do not impose assumptions on the values of di’s,

i.e., the similarities between the meta- and target tasks. Therefore, Theorem 7.1

gives a robust regret upper bound which holds for any given set of meta-tasks.

In other words, even in adverse scenarios where some or all meta-tasks are

extremely dissimilar to the target task (i.e., when some or all di’s are very large),

RM-GP-UCB is still asymptotically no-regret, which indicates the robustness

and generality of our algorithm. In our proof, the key step (Lemma D.1 in

Appendix D.1) is to upper bound the overall error induced by the use of any

given set of meta-observations, instead of the target observations at the same

corresponding input locations, when calculating the acquisition function (7.1).

This provides an assurance about the worst-case behavior in any given scenario.2

Concretely, αi in Theorem 7.1 can be interpreted as an upper bound on the

cumulative error incurred by using the meta-observations of fi in calculating the

acquisition function (7.1). Similarly, α can be viewed an upper bound on the

overall error induced by the use of all meta-observations. These interpretations

also explain the dependence of α, hence the regret upper bound, on di and

Ni: Larger function gaps increase the error resulting from the use of the meta-

observations, and a larger number ofmeta-observations also inflates theworst-case

1Recall we have mentioned in Section 2.2 that for the SE kernel, γT = O((log T )d+1); for
the Matérn kernel with parameter ν > 1, γT = O(T d(d+1)/(2ν+d(d+1)) log T ). Therefore, for
both kernels, the second term in Theorem 7.1 grows sublinearly.

2This notion of robustness is in line with that of robust optimization (RO) Beyer and Sendhoff
(2007) which also attempts to optimize the performance in the worst-case scenario. The difference
is that RO optimizes an explicit objective, while we aim at preserving the no-regret property in
the worst case.
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upper bound by accumulating the individual errors3. On the other hand, to achieve

robustness against dissimilar tasks, we may sacrifice our ability to fully utilize

the similar meta-tasks to improve the convergence, which may be a limitation of

our RM-GP-UCB algorithm.

Meta-tasksCan Improve theConvergence byAcceleratingExploration. In

addition to characterizing the worst-case behavior, we also exploit our theoretical

analysis to illustrate how meta-tasks can help RM-GP-UCB converge faster

than standard GP-UCB. As we have proved in Appendix D.1.3, at the early

stage of the algorithm, the meta-tasks (if similar to the target task) can help

RM-GP-UCB obtain a smaller regret upper bound than GP-UCB by reducing the

uncertainty at the selected input. Equivalently, the additional information from

the meta-tasks allows RM-GP-UCB to reduce the degree of exploration at the

early stage. Since the initial exploration phase of BO usually incurs large regrets,

less exploration results in smaller regrets. At later stages when νt becomes close

to 0, RM-GP-UCB converges to no regret at a similar rate to GP-UCB.

Besides the above insights, Theorem 7.1 provides two natural hints to the

practical design of RM-GP-UCB. Firstly, note that Theorem 7.1 holds for all

choices of meta-weights ωi’s as long as they form a probability simplex. So, we

have the flexibility to choose the optimal ωi’s (i.e., learn the task similarity) by

minimizing the regret upper bound (Theorem 7.1). Secondly, the interpretations

of α and νt suggest that we can make the influence of the meta-tasks (quantified

by νt) decay faster if the error produced by using the meta-tasks (measured by its

upper boundα) is larger. Both design choices can strengthen the robustness of RM-

GP-UCB against dissimilar meta-tasks by lessening their impact. Unfortunately,

they both require the value of α, which we lack access to since the function gaps

di’s are unavailable. To this end, we devise a principled technique to estimate

upper bounds on the function gaps, which is presented in Section 7.5.1.

3Note that a larger Ni is also likely to increase the value of di, as a result of the definition of
di (Section 7.2).
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7.5 Online Meta-Weight Optimization

In this section, we first introduce a principled technique for estimating high-

probability upper bounds on the function gaps (Section 7.5.1) that, when combined

with Theorem 7.1, naturally yields a principled method for optimizing the meta-

weights through regret minimization via online learning.

7.5.1 Online Estimation of Function Gaps

Inspired by the confidence region constructed by GP-UCB (Srinivas et al.,

2010) that contains the target function with high probability, after t ≥ 1 target

observations have been collected, define

Ut,i,j , µt(xi,j) +
√
βt+1σt(xi,j) ,

Lt,i,j , µt(xi,j)−
√
βt+1σt(xi,j),

(7.2)

wherexi,j is the j-th input ofmeta-task i, βt+1 is previously defined inTheorem7.1,

and Ut,i,j and Lt,i,j can be interpreted, respectively, as the upper and lower

confidence bounds of f at xi,j after t iterations. Lemma D.2 (Appendix D.1)

implies that with probability of at least 1− δ (δ is previously defined in Theorem

7.1): Lt,i,j ≤ f(xi,j) ≤ Ut,i,j,∀t, i, j . Consequently, the following result gives

high-probability upper bounds on the function gaps (proof in Appendix D.1.4):

Lemma 7.1. Let δ, δ′ ∈ (0, 1). Then, with probability of at least 1− δ − δ′,

di ≤
√

2σ2 log
[(

2
∑M

i=1
Ni

)
/δ′
]
+

max
j=1,...,Ni

[
max{|yi,j − Ut,i,j|, |yi,j − Lt,i,j|}

]
, di,t,

for t = 1, . . . , T and i = 1, . . . ,M .

Unlike di, di,t can be efficiently calculated as its incurred time is linear in

both M and N . Note that although the theoretical upper bound on di’s from
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Lemma 7.1 may be loose, it provides some useful practical insights on online

meta-weight optimization, which are detailed in the next section.

7.5.2 Online Meta-Weight Optimization through Regret

Minimization

Lemma 7.1 and Theorem 7.1 allow us to derive the following result (proof in

Appendix D.1.5):

Proposition 7.1. Let δ, δ′ ∈ (0, 1). Then, with probability of at least 1− δ − δ′,

RT ≤
2

σ2

[∑T

t=1
ω>lt

][∑T

t=1
νt

]
+

2
√
τ
∑T

t=1
νt +

√
C1T (1− νT )2 βTγT ,

where ω , [ωi]i=1,...,M , lt , [li,t]i=1,...,M , and li,t , 2N
3/2
i

√
2σ2 log(6Ni/δ) +

di,tN
3/2
i .

Note that lt can be efficiently computed after the t-th observation is collected.

The regret upper bound in Proposition 7.1 depends on ωi’s only through the

term
∑T

t=1ω
>lt which can be minimized to optimize the meta-weights. This

constitutes an online learning problem with linear loss function and its solutionω

constrained to a probability simplex. An additional entropic regularization term is

preferred so as to encourage a solution with a large entropy to stabilize it (Bubeck,

2011). This corresponds to encouraging the meta-weights to spread across a large

number of meta-tasks, in order to discover as many similar meta-tasks as possible.

As a result, by using 1/η (η > 0) as the regularization parameter, the optimized

ω in iteration t > 1 is obtained by solving the following optimization problem:

ω , arg min
ω′

∑t−1

s=1
ω′>ls + η−1

∑M

i=1
ω′i logω′i, (7.3)

subject to the constraints: ω′i ≥ 0 for all i and
∑M

i=1 ω
′
i = 1. When t =
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1, the optimized ω follows from optimizing only the entropic regularization

term, thus naturally entailing the uniform distribution ωi = 1/M for all i.

Consequently, (7.3) corresponds exactly to the online learning algorithm called

Follow-The-Regularized-Leader with an entropic regularizer (Bubeck, 2011)

where η represents the learning rate. Its optimal solution in iteration t can be

derived via Lagrange multiplier (Appendix D.1.6) as

ωi =
e−η

∑t−1
s=1 li,s∑M

j=1 e
−η

∑t−1
s=1 lj,s

(a)
≈ e−ηN

3
2
∑t−1
s=1 di,s∑M

j=1 e
−ηN

3
2
∑t−1
s=1 dj,s

, (7.4)

for i = 1, . . . ,M where (a) follows from assuming that all Ni’s are close to

N for simplicity. With this simplification, the first (noise-correction) term in

the expression of di,t from Lemma 7.1 also cancels out, thus leading to a neat

and elegant update rule for ωi which we use in all our experiments. As is

evident from (7.4), the update of ωi’s in each iteration only involves computing

di,t’s (i.e., incurring O(MN) time), adding one term to the summation on the

exponent (O(M) time), and a normalization step (O(M) time), all of which are

computationally cheap; this is another factor contributing to the scalability of

RM-GP-UCB. Intuitively, (7.4) assigns small weights to meta-tasks with a large

cumulative estimated function gap which implies a less similar meta-task. So,

RM-GP-UCB handles dissimilar meta-tasks in a principled way by reducing their

impact.

In addition, di,t from Lemma 7.1 also allows for the estimation of an upper

bound on α (Theorem 7.1) in each iteration (i.e., by simply replacing di with

di,t) and thus facilitates an adaptive selection of νt, as mentioned in Section 7.4.

Specifically, we set ν1 = 1 and νt = νt−1 ×min(r, (
∑M

i=1 ωidi,t)
−ε) for t > 1, in

which we have dropped the constants independent of di,t. r ∈ (0, 1) represents

the minimum decaying rate to ensure the monotonic decay of νt required by

Corollary 7.1, and ε > 0 controls the aggressiveness of the adaptive decay such
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that a larger ε results in a faster decay. With this adaptive tuning scheme, when

the overall estimated function gaps are larger (the meta-tasks are dissimilar), νt

decays faster and thus the impact of the meta-tasks vanishes more quickly.

7.6 Experiments and Discussion

We use extensive real-world experiments to compare our RM-GP-UCB algorithm

with (1) GP-UCB, two other recently introduced scalable meta-BO algorithms:

(2) ranking-weighted Gaussian process ensemble (RGPE) (Feurer et al., 2018)

and (3) transfer acquisition function (TAF) (Wistuba et al., 2018) (Section 3.4),

(4) multitask BO (MTBO) (Swersky et al., 2013), and (5) the method from Wang

et al. (2018) named point estimate meta-BO (PEM-BO). Since MTBO is relatively

not scalable (Sections 7.1 and 3.4), we only apply it to those experiments with

relatively small number of meta-tasks and observations for which MTBO is still

computationally feasible. However, MTBO is found to be significantly more

time-consuming than the other methods in these experiments (Section 7.6.3). We

compare with PEM-BO in the experiment that is most favorable for this algorithm,

i.e., with the largest number of meta-observations and a discrete domain (refer to

Section 7.6.2 for more details). We set η = 1/N3/2, ε = 0.7 and r = 0.7 in all

real-world experiments to demonstrate the robustness of our algorithm against

the choice of these parameters. In practice, the upper bound on the function gap,

di,t, from Lemma 7.1 may be too conservative; so, we replace the outer max

operator over j = 1, ..., Ni with the empirical mean in our experiments.4 Some

details and results are deferred to Appendix D.2 due to lack of space. All error

bars represent standard errors.

4We explore the difference between these two choices in Appendix D.2.3.
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Figure 7.1: (a) The simple regret and (b) meta-weights optimized by RM-GP-
UCB. The impact of (c) η and (d) ε.

7.6.1 Synthetic Experiments

We firstly optimize synthetic functions drawn from GPs. For each objective

function, we constructM = 4 meta-tasks with N = Ni = 20 meta-observations

each. The function gaps are chosen as d1 = d2 = 0.05 and d3 = d4 = 4.0 such

that the last 2 meta-tasks are dissimilar to the target task. Fig. 7.1a plots the simple

regrets averaged over 20 randomly drawn synthetic functions, with ηN3/2 = 1.0,

ε = 0.7, and r = 0.7. The figure shows that RM-GP-UCB with fixed uniform

meta-weights (ωi = 1/4 for all i) outperforms GP-UCB, and RM-GP-UCB with

online meta-weight optimization (red) performs even better. Fig. 7.1b plots the

meta-weights optimized by RM-GP-UCB for the red curve in Fig. 7.1a, showing

that online meta-weight optimization (Section 7.5) rapidly reduces the weights

given to the last two meta-tasks which are dissimilar to the target task. This shows

the effectiveness of online meta-weight optimization in diminishing the impact

of dissimilar meta-tasks (Fig. 7.1b), and verifies that it leads to performance

improvement (Fig. 7.1a).
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We also investigate the impact of η and ε. Fig. 7.1c shows the performances of

different values of η, with fixed ε = 0.7 and r = 0.7. The figure demonstrates that

an excessively small η (purple curve) negatively impacts the performance, since

RM-GP-UCB is unable to quickly reduce the weights of dissimilar meta-tasks

(Fig. D.2a in Appendix D.2.1). Moreover, an overly large η is also slightly

detrimental (green curve) since it rapidly assigns a large weight to one of the two

useful meta-tasks (Fig. D.2c in Appendix D.2.1), thus failing to utilize the other

useful meta-task. Fig. 7.1d illustrates the impact of ε when all function gaps are

large: di = 8.0 for all i.5 The figure shows that even when all meta-tasks are

dissimilar, our adaptive selection of νt is able to diminish their negative impact

and allow RM-GP-UCB to perform comparably to GP-UCB. Furthermore, in

this adverse scenario, a faster decline of the impact of the meta-tasks (i.e., faster

decay of ηt via larger ε) leads to slightly better performance. Fig. 7.1d verifies our

robustness against dissimilar meta-tasks, which can be attributed to our robust

convergence guarantee and online meta-weight optimization.

7.6.2 Real-world Experiments

Hyperparameter Tuning for Convolutional Neural Networks (CNN). Here,

we apply meta-BO to hyperparameter tuning of ML models with the previous

tasks using other datasets as the meta-tasks. We tune 3 hyperparameters of CNN

using 4 widely used image datasets: MNIST, SVHN, CIFAR-10 and CIFAR-

100. Specifically, in each experiment, one of the four datasets is selected to

produce the target function f which maps a hyperparameter setting to a validation

accuracy obtained using this dataset. The meta-observations are generated from

3 independent BO tasks (each with 50 iterations) using the other 3 datasets, i.e.,

M = 3 and Ni = 50 for i = 1, 2, 3 in all 4 experiments. The results for MNIST

5We use η = 1/N3/2 and fix r at a large value (0.99) so that the decaying rate of νt is purely
decided by ε.
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Figure 7.2: Best validation error of CNN for (a) MNIST and (b) CIFAR-10.
(c) Best validation error of CNN using Omniglot. (d) Simple regret on SVM
benchmark.

and CIFAR-10 are plotted in Figs. 7.2a and 7.2b while the remaining results

are shown in Appendix D.2.2 (Fig. D.3). The performance of RM-GP-UCB

is the best for MNIST (Fig. 7.2a) and comparable to RGPE in the other tasks

(i.e., outperforming GP-UCB, TAF and MTBO). We also adopt the Omniglot

dataset (Lake et al., 2015), which is widely used for meta-learning. Each task

uses one alphabet, and involves tuning 3 hyperparameters of a Siamese network

for one-shot classification, trained and validated using 75% and 25% of the

alphabet respectively. We use 10 alphabets from background set as 10 meta-tasks

and an alphabet from evaluation set as the target task. The 2-way validation

errors (Fig. 7.2c) show that RM-GP-UCB outperforms all other algorithms under

comparison.

Hyperparameter Tuning for Support Vector Machines (SVM).We also

apply our algorithm to hyperparameter tuning for SVM using a tabular benchmark

dataset (Wistuba et al., 2015a) which has also been adopted by RGPE (Feurer

et al., 2018). The benchmark was constructed by evaluating a fixed grid of 288
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7.6. EXPERIMENTS AND DISCUSSION

SVM hyperparameter configurations using 50 diverse datasets (tasks). We follow

the setting used by RGPE (Feurer et al., 2018): In every trial, we fix one of the

tasks as the target task, and the remainingM = 49 tasks as the meta-tasks; for

every meta-task i, we randomly select Ni = 50 hyperparameter configurations

on the grid as the meta-observations. The results in Fig. 7.2d (averaged over 25

trials, each further averaged over 5 runs with random initializations) show that

our RM-GP-UCB performs comparably to RGPE, outperforming GP-UCB, TAF

and PEM-BOWang et al. (2018). Of note, this experiment has the most favorable

setting for PEM-BO because (a) PEM-BO has been shown to require a massive

set of meta-observations (≥ 5000 in their experiments) to perform well (Wang

et al., 2018), and this experiment has the largest number (49 × 50 = 2450) of

meta-observations among all our experiments; (b) the domain here is discrete,

which is much easier for the application of PEM-BO.

Human Activity Recognition (HAR). HAR using mobile devices has

promising applications in various domains such as healthcare (Reyes-Ortiz

et al., 2013). When optimizing the configurations (hyperparameters) of the

activity prediction model (ML model) for a subject, the previous optimization

tasks for other subjects might be helpful. However, cross-subject transfer in

HAR is challenging due to high individual variability (Soleimani and Nazerfard,

2019), which makes HAR suitable for evaluating the robustness of a meta-BO

algorithm against dissimilar meta-tasks. We use the same dataset for human

activity recognition using mobile phone sensors which has also been used in

the experiments in Chapters 5 and 6. The dataset is collected through mobile

phone sensors from 30 subjects performing 6 activities and we use SVM for

activity prediction. Every task corresponds to tuning 2 SVM hyperparameters for

a subject. We run a separate BO (30 iterations) for each of the first 21 subjects to

generate the meta-observations (M = 21, Ni = 30 for i = 1, . . . , 21) and use the

other 9 subjects for validation. The validation error for each subject is averaged
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Figure 7.3: (a) Average rank of best validation errors for the HAR experiment.
(b) Best validation error for diabetes diagnosis. (c) Best cumulative rewards and
(d) learned meta-weights for the 3 similar meta-tasks for the RL experiment.

over 10 random initializations (shown in Fig. D.4, Appendix D.2.2). Then, for

each tested algorithm and in every iteration, the rank (among the 4 algorithms) of

their corresponding validation error is averaged over the 9 subjects (Fig. 7.3a),

which shows that RM-GP-UCB outperforms all other algorithms.6

Non-stationary Bayesian Optimization. Meta-BO can be naturally applied

to non-stationary BO problems in which the unknown objective function evolves

over time since the previous (outdated) observations can be treated as the meta-

observations. We consider here automated ML for clinical diagnosis. As the

data from new patients becomes available regularly, clinicians often need to

periodically update the dataset and re-run hyperparameter optimization for the

ML model used for clinical diagnosis. This stimulates the question as to whether

the previous hyperparameter tuning tasks using the outdated patients data can

help accelerate the current task. We consider here the problem of diabetes

prediction (Smith et al., 1988) with logistic regression (LR) and tune 3 LR

6The average ranks are shown since the subjects have different scales of validation errors.
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hyperparameters. We create 5 progressively growing datasets (including the full

dataset), treating (the hyperparameter tuning task using) the full dataset as the

target task and the 4 smaller datasets as the meta-tasks. The results (Fig. 7.3b)

show that MTBO and TAF perform the best, and RM-GP-UCB follows closely,

outperforming both RGPE and GP-UCB.

Policy Search for Reinforcement Learning (RL). When optimizing the

RL policy of an agent in an environment, the agent’s experience in other related

environments may help to make learning more efficient (Duan et al., 2016;

Wang et al., 2016). We apply meta-BO to policy search in RL to maximize

the cumulative rewards in an episode, using the Cart-Pole environment from

OpenAI Gym (Brockman et al., 2016). We adopt a linear policy, i.e., every policy

is represented by a 4 × 2 matrix which linearly maps a state vector of length

4 to an action vector of length 2. As a result, for a given policy matrix in a

particular state, the action with the largest value in the mapped action vector is

taken. The performance metric used in the experiment is the cumulative rewards

(normalized to the range [0, 1]) in an episode (averaged over 10 independent

episodes), and the maximum length of each episode is set to 200. We simulate

different environments by setting the agent to different initial states. In particular,

we chooseM = 10 different initial states, among which 7 are randomly generated

(i.e., dissimilar meta-tasks) and the other 3 are designed to be close to the

initial state of the target task so that they are similar to the target task. An

independent BO task with 50 iterations is run for every initial state, i.e., Ni = 50

for i = 1, . . . , 10. Figs. 7.3c and 7.3d plot the (normalized) cumulative rewards

of different algorithms and their learned meta-weights for the 3 similar meta-tasks.

The results show that RM-GP-UCB achieves the best performance (Fig. 7.3c),

because it is more effective at identifying the 3 similar meta-tasks and thus

diminishing the impact of the remaining dissimilar meta-tasks (Fig. 7.3d). RGPE

and TAF fail to correctly identify similar meta-tasks because they learn the
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meta-weights based on how accurately each GP surrogate predicts the pairwise

ranking of the target observations (more details in Section 3.4). However, in this

case, many target observations have equal values, which confuses the pairwise

ranking and makes the learned meta-weights unreliable.

7.6.3 Experimental Discussion

In most of our experimental results (Figs. 7.1, 7.2 and 7.3), the performance

advantage of RM-GP-UCB is most evident at the initial stage. This is likely

to corroborate our theoretical insights (Section 7.4) that the meta-tasks can

help improve the convergence of RM-GP-UCB at the initial stage by reducing

the degree of exploration. We also empirically demonstrate the scalability of

our method (results in Appendix D.2.4) by (a) showing that the runtime of

RM-GP-UCB is much smaller than MTBO in the non-stationary BO experiment,

and (b) performing a more large-scale version of the RL experiment with 7800

meta-observations (60 meta-tasks, each containing 130 meta-observations).

A commonly raised issue in meta-BO is that the meta-functions may have

different scales from the target function, i.e., the meta-functions may be shifted

or scaled versions of the target function (Feurer et al., 2018). Nonetheless,

this problem is not explicitly addressed here for the following reasons: Firstly,

in some scenarios, the scale of the meta-functions is informative about task

similarity and thus should not be removed. For example, in our clinical diagnosis

experiment, the more recently completed meta-tasks (with larger training set,

smaller validation errors, and thus smaller function gaps) are expected to be

more similar to the target task. Secondly, as demonstrated by the green curve

in Fig. 7.1a, even though the meta-weights are not optimized, RM-GP-UCB

still performs favorably, thus justifying its robustness against mis-specification

of the meta-weights. Moreover, RM-GP-UCB performs favorably throughout

all experiments. Specifically, RM-GP-UCB outperforms standard GP-UCB in
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all real-world experiments, while TAF (RGPE) fails to outperform standard

GP-UCB in Figs. 7.2a and 7.2b (Figs. 7.2a and 7.3a), which is likely to result

from the negative impact of harmful dissimilar meta-tasks. This might suggest

RM-GP-UCB’s superior ability to prevent the convergence of BO from being

affected by dissimilar meta-tasks, which is believed to be largely due to its

theoretically guaranteed convergence even when faced with dissimilar meta-tasks

(Section 7.4) and its ability to identify dissimilar meta-tasks in a principled way

(Section 7.5).

7.7 Conclusion

This chapter has introduced RM-GP-UCB, a scalable, principled and robust

meta-BO algorithm that is asymptotically no-regret even when all meta-tasks are

dissimilar to the target task. The regret upper bound of RM-GP-UCB is minimized

via online learning to learn task similarity and identify harmful dissimilar tasks.

RM-GP-UCB achieves competitive and consistent performances in a wide range

of real-world experiments.
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Chapter 8

Bayesian Optimization with

Recursive Reasoning for Games

This chapter is based on the following paper published at ICML 2020:

Dai, Z., Chen, Y., Low, K. H., Jaillet, P., & Ho, T. H. (2020). R2-B2: Recursive

reasoning-based Bayesian optimization for no-regret learning in games. In Proc.

ICML.

8.1 Introduction

Several fundamental machine learning tasks in the real world involve intricate

interactions between boundedly rational1, self-interested agents that can be

modeled as a form of repeated games with unknown, complex, and costly-to-

evaluate payoff functions for the agents. For example, in adversarial machine

learning (ML), the interactions between the defender D and the attacker A of

an ML model can be modeled as a repeated game in which the payoffs to D

and A are the performance of the ML model (e.g., validation accuracy) and its

negation, respectively. Specifically, given a fully trained image classification

1Boundedly rational agents are subject to limited cognition and time in making deci-
sions (Gigerenzer and Selten, 2002).
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model (say, provided as an online service), A attempts to fool the ML model into

misclassification through repeated queries of the model using perturbed input

images. On the other hand, for each queried image that is perturbed by A, D

tries to ensure the correctness of its classification by transforming the perturbed

image before feeding it into the ML model. As another example, multi-agent

reinforcement learning (MARL) in an episodic environment can also be modeled

as a repeated game in which the payoff to each agent is its return from the

execution of all the agents’ selected policies.

Solving such a form of repeated games in a cost-efficient manner is challenging

since the payoff functions of the agents are unknown, complex (e.g., possibly noisy,

non-convex, and/or with no closed-form expression/derivative), and costly to

evaluate. Fortunately, the payoffs corresponding to different actions of each agent

tend to be correlated. For example, in adversarial ML, the correlated perturbations

performed by the attacker A (and correlated transformations executed by the

defender D) are likely to induce similar effects on the performance of the ML

model. Such a correlation can be leveraged to predict the payoff associated with

any action of an agent using a surrogate model such as the rich class of Bayesian

nonparametric Gaussian process (GP) models (Rasmussen and Williams, 2006)

which is expressive enough to represent a predictive belief of the unknown,

complex payoff function over the action space of the agent. Then, in each

iteration, the agent can select an action for evaluating its unknown payoff function

that trades off between sampling at or near to a likely maximum payoff based on

the current GP belief (exploitation) vs. improving the GP belief (exploration)

until its cost/sampling budget is expended. To do this, the agent can use a

sequential black-box optimizer such as the celebrated Bayesian optimization (BO)

algorithm (Shahriari et al., 2016) based on the GP-upper confidence bound (GP-

UCB) acquisition function (Srinivas et al., 2010), which guarantees asymptotic

no-regret performance and is sample-efficient in practice. How then can we
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design a BO algorithm to account for its interactions with boundedly rational1,

self-interested agents and still guarantee the trademark asymptotic no-regret

performance?

Inspired by the cognitive hierarchy model of games (Camerer et al., 2004), we

adopt a recursive reasoning formalism (i.e., typical among humans) to model the

reasoning process in the interactions between boundedly rational1, self-interested

agents. It comprises k levels of reasoning which represents the cognitive limit of

the agent. At level k = 0 of reasoning, the agent randomizes its choice of actions.

At a higher level k ≥ 1 of reasoning, the agent selects its best response to the

actions of the other agents who are reasoning at lower levels 0, 1, . . . , k − 1.

This chapter presents the first recursive reasoning formalism of BO to

model the reasoning process in the interactions between boundedly rational1,

self-interested agents with unknown, complex, and costly-to-evaluate payoff

functions in repeated games, which we call Recursive Reasoning-Based BO

(R2-B2) (Section 8.3). R2-B2 provides these agents with principled strategies

for performing effectively in this type of game. In this work, we consider

repeated games with simultaneous moves and perfect monitoring2. Our R2-B2

algorithm is general in that it does not constrain the relationship among the

payoff functions of different agents and can thus be applied to various types of

games such as constant-sum games (e.g., adversarial ML in which the attacker

A and defender D have opposing objectives), general-sum games (e.g., MARL

where all agents have possibly different yet not necessarily conflicting goals),

and common-payoff games (i.e., all agents have identical payoff functions). We

prove that by reasoning at level k ≥ 2 and one level higher than the other agents,

our R2-B2 agent can achieve faster asymptotic convergence to no regret than

that without utilizing recursive reasoning (Section 8.3.1.3). We also propose a

2In each iteration of a repeated game with (a) simultaneous moves and (b) perfect monitoring,
every agent, respectively, (a) chooses its action simultaneously without knowing the other agents’
selected actions, and (b) has access to the entire history of game plays, which includes all actions
selected and payoffs observed by every agent in the previous iterations.
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computationally cheaper variant of R2-B2 called R2-B2-Lite at the expense of a

weaker convergence guarantee (Section 8.3.2). The performance and generality

of R2-B2 are demonstrated through extensive experiments using synthetic games,

adversarial ML, and MARL (Section 8.4). Interestingly, we empirically show

that by reasoning at a higher level, our R2-B2 defender is able to effectively

defend against the attacks from the state-of-the-art black-box adversarial attackers

(Section 8.4.2.2), which can be of independent interest to the adversarial ML

community.

8.2 Background and Problem Formulation

For simplicity, we will mostly focus on repeated games between two agents,

but have extended our R2-B2 algorithm to games involving more than two

agents, as detailed in Appendix E.2. To ease exposition, throughout this chapter,

we will use adversarial ML as the running example and thus refer to the two

agents as the attacker A and the defender D. For example, the input action

space X1 ⊂ Rd1 of A can be a set of allowed perturbations of a test image

while the input action space X2 ⊂ Rd2 of D can represent a set of feasible

transformations of the perturbed test image. We consider both input domains

X1 and X2 to be discrete for simplicity; generalization of our theoretical results

in Section 8.3 to continuous, compact domains can be easily achieved through

a suitable discretization of the domains (Srinivas et al., 2010). When the ML

model is an image classification model, the payoff function f1 : X1 ×X2 → R of

A, which takes in its perturbation x1 ∈ X1 and D’s transformation x2 ∈ X2 as

inputs, can be the maximum predictive probability among all incorrect classes

for a test image since A intends to cause misclassification. Since A and D

have opposing objectives (i.e., D intends to prevent misclassification), the payoff

function f2 : X1 ×X2 → R of D can be the negation of that of A, thus resulting
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in a constant-sum game between A and D.

In each iteration t = 1, . . . , T of the repeated game with simultaneous moves

and perfect monitoring23, A and D select their respective input actions x1,t and

x2,t simultaneously using our R2-B2 algorithm (Section 8.3) for evaluating their

payoff functions f1 and f2. Then, A and D receive the respective noisy observed

payoffs y1,t , f1(x1,t,x2,t) + ε1 and y2,t , f2(x1,t,x2,t) + ε2 with i.i.d. Gaussian

noises εi ∼ N (0, σ2
i ) and noise variances σ2

i for i = 1, 2.

A common practice in game theory is to measure the performance of A via

its (external) regret (Nisan et al., 2007):

R1,T ,
∑T

t=1[f1(x∗1,x2,t)− f1(x1,t,x2,t)] (8.1)

where x∗1 , arg maxx1∈X1

∑T
t=1 f1(x1,x2,t). The external regret R2,T of D is

defined in a similar manner. An algorithm is said to achieve asymptotic no

regret if R1,T grows sub-linearly in T , i.e., limT→∞R1,T/T = 0. Intuitively, by

following a no-regret algorithm, A is guaranteed to eventually find its optimal

input action x∗1 in hindsight, regardless of D’s sequence of input actions.

To guarantee no regret (Section 8.3), A represents a predictive belief of its

unknown, complex payoff function f1 using the rich class of Gaussian process

(GP) models by modeling f1 as a sample of a GP (Rasmussen and Williams,

2006). D does likewise with its unknown f2. A detailed background on GP

has been given in Section 2.1, except that the input x in Section 2.1 need to be

replaced with [x1,x2]. In particular, A uses the GP predictive/posterior belief

of f1 to compute the GP-UCB (Section 2.2) at any joint input actions (x1,x2),

which will be exploited by our R2-B2 algorithm (Section 8.3):

α1,t(x1,x2) , µt−1(x1,x2) + β
1/2
t σt−1(x1,x2) (8.2)

3Note that in some tasks such as adversarial ML, the requirement of perfect monitoring can
be relaxed considerably. Refer to Section 8.4.2.2 for more details.
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for iteration t where µt−1(x1,x2) and σ2
t−1(x1,x2) denote, respectively, the GP

posterior mean and variance at (x1,x2) (2.1) conditioned on the history of game

plays up till iteration t − 1 that includes A’s observed payoffs and the actions

selected by both agents in iterations 1, . . . , t − 1. The GP-UCB acquisition

function α2,t for D is defined likewise. Supposing A knows the input action

x2,t selected by D and chooses an input action x1 to maximize the GP-UCB

acquisition function α1,t (8.2), its choice involves trading off between sampling

close to an expected maximum payoff (i.e., with large GP posterior mean) given

the current GP belief of f1 (exploitation) vs. that of high predictive uncertainty

(i.e., with large GP posterior variance) to improve the GP belief of f1 (exploration)

where the parameter βt is set to trade off between exploitation vs. exploration for

bounding its external regret (8.1), as specified later in Theorem 8.1.

8.3 Recursive Reasoning-Based Bayesian Optimiza-

tion (R2-B2)

Algorithm 8.1 describes the R2-B2 algorithm from the perspective of attacker A

which we will adopt in this section. Our R2-B2 algorithm for defender D can be

derived analogously. We will now discuss the recursive reasoning formalism of

BO for A’s action selection in step 2 of Algorithm 8.1.

8.3.1 Recursive Reasoning Formalism of BO

Our recursive reasoning formalism of BO follows a similar principle as the

cognitive hierarchy model (Camerer et al., 2004): At level k = 0 of reasoning, A

adopts some randomized/mixed strategy of selecting its action. At level k ≥ 1 of

reasoning, A best-responds to the strategy of D who is reasoning at a lower level.

Let xk1,t denote the input action x1,t selected by A’s strategy from reasoning at
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Algorithm 8.1 R2-B2 for attacker A’s level-k reasoning
1: for t = 1, 2, . . . , T do
2: Select input action x1,t using its level-k strategy (while defender D selects

input action x2,t)
3: Observe noisy payoff y1,t = f1(x1,t,x2,t) + ε1
4: Update GP posterior belief using 〈(x1,t,x2,t), y1,t〉

level k in iteration t. Depending on the (a) degree of knowledge about D and (b)

available computational resource, A can choose one of the following three types

of strategies of selecting its action with varying levels of reasoning, as shown in

Fig. 8.1:

Level-k = 0 Strategy. Without knowledge of D’s level of reasoning nor its

level-0 strategy, A by default can reason at level 0 and play a mixed strategy P0
1,t

of selecting its action by sampling x0
1,t from the probability distribution P0

1,t over

its input action space X1, as discussed in Section 8.3.1.1.

Level-k = 1 Strategy. If A thinks that D reasons at level 0 and has

knowledge of D’s level-0 mixed strategy P0
2,t, then A can reason at level 1 and

play a pure strategy that best-responds to the level-0 strategy of D, as explained

in Section 8.3.1.2. Such a level-1 reasoning of A is general since it caters to

any level-0 strategy of D and hence does not require D to perform recursive

reasoning.

Level-k ≥ 2 Strategy. If A thinks that D reasons at level k − 1, then A can

reason at level k and play a pure strategy that best-responds to D’s level-(k − 1)

action, as detailed in Section 8.3.1.3. Different from the level-1 reasoning of A,

its level-k reasoning assumes that D’s level-(k − 1) action is derived using the

same recursive reasoning process.

8.3.1.1 Level-k = 0 Strategy

Level 0 is a conservative, default choice for A since it does not require any

knowledge about D’s strategy of selecting its input action and is computationally
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Figure 8.1: Illustration of attackerA’s strategies of selecting its input action from
reasoning at levels k = 0, 1, and 2.

lightweight. At level 0, A plays a mixed strategy P0
1,t by sampling x0

1,t from

the probability distribution P0
1,t over its input action space X1: x0

1,t ∼ P0
1,t. A

mixed/randomized strategy (instead of a pure/deterministic strategy) is considered

because without knowledge of D’s strategy, A has to treat D as a black-box

adversary. This setting corresponds to that of an adversarial bandit problem in

which any deterministic strategy suffers from linear worst-case regret (Lattimore

and Szepesvári, 2020) and randomization alleviates this issue. Such a randomized

design of our level-0 strategies is consistent with that of the cognitive hierarchy

model in which a level-0 thinker does not make any assumption about the

other agent and selects its action via a probability distribution without using

strategic thinking (Camerer et al., 2004). We will now present a few reasonable

choices of level-0 mixed strategies. However, in both theory (Theorems 8.2, 8.3

and 8.4) and practice, any strategy of action selection (including existing methods

(Section 8.4.2.2)) can be considered as a level-0 strategy.

In the simplest setting where A has no knowledge of D’s strategy, a natural

choice for its level-0 mixed strategy is random search. That is, A samples its

action from a uniform distribution over X1. An alternative choice is to use the

EXP3 algorithm for the adversarial linear bandit problem, which requires the
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GP to be transformed via a random features approximation (Rahimi and Recht,

2007) into linear regression with random features as inputs. Since the regret of

EXP3 algorithm is bounded from above by O(
√
d′1T log |X1|) (Lattimore and

Szepesvári, 2020) where d′1 denotes the number of random features, it incurs

sub-linear regret and can thus achieve asymptotic no regret.

In a more relaxed setting whereA has access to the history of actions selected

by D, A can use the GP-MW algorithm (Sessa et al., 2019) to derive its level-0

mixed strategy; for completeness, GP-MW is briefly described in Appendix E.1.

The result below bounds the regret ofAwhen using GP-MW for level-0 reasoning

and its proof is slightly modified from that of (Sessa et al., 2019) to account for

its payoff function f1 being sampled from a GP (Section 8.2):

Theorem 8.1. Let δ ∈ (0, 1), βt , 2 log(|X1|t2π2/(3δ)), and γT denotes the

maximum information gain about payoff function f1 from any history of actions

selected by both agents and corresponding noisy payoffs observed by A up till

iteration T . Suppose that A uses GP-MW to derive its level-0 strategy. Then,

with probability of at least 1− δ,

R1,T = O(
√
T log |X1|+

√
T log(2/δ) +

√
TβTγT ) .

From Theorem 8.1, R1,T is sub-linear in T for some commonly used kernels

such as the SE kernel and Matérn kernel.4 Therefore,A using GP-MW for level-0

reasoning achieves asymptotic no regret.

8.3.1.2 Level-k = 1 Strategy

If A thinks that D reasons at level 0 and has knowledge of D’s level-0 strategy

P0
2,t, then A can reason at level 1. Specifically, A selects its level-1 action x1

1,t

4Recall we have introduced in Section 2.2 that the asymptotic growth of γT has been
analyzed for some commonly used kernels: γT = O((log T )d1+1) for the SE kernel and
γT = O(T d1(d1+1)/(2ν+d1(d1+1)) log T ) for Matérn kernel with parameter ν > 1. For both
kernels, the last term in the regret bound in Theorem 8.1 grows sub-linearly in T .
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that maximizes the expected value of GP-UCB (8.2) w.r.t. D’s level-0 strategy:

x1
1,t , arg maxx1∈X1

Ex0
2,t∼P0

2,t
[α1,t(x1,x

0
2,t)] . (8.3)

If input action spaceX2 ofD is discrete and not too large, then (8.3) can be solved

exactly. Otherwise, (8.3) can be solved approximately via sampling from P0
2,t.

Such a level-1 reasoning of A to solve (8.3) only requires access to the history

of actions selected by D but not its observed payoffs, which is the same as that

needed by GP-MW. Our first main result (see its proof in Appendix E.3) bounds

the expected regret of A when using R2-B2 for level-1 reasoning:

Theorem 8.2. Let δ ∈ (0, 1) and C1 , 8/ log(1 + σ−2
1 ). Suppose that A uses

R2-B2 (Algorithm 8.1) for level-1 reasoning and D uses mixed strategy P0
2,t for

level-0 reasoning. Then, with probability of at least 1−δ, E[R1,T ] ≤
√
C1TβTγT

where the expectation is with respect to the history of actions selected and payoffs

observed by D.

It follows from Theorem 8.2 that E[R1,T ] is sublinear in T .4 So, A using

R2-B2 for level-1 reasoning achieves asymptotic no expected regret, which

holds for any level-0 strategy of D regardless of whether D performs recursive

reasoning.

8.3.1.3 Level-k ≥ 2 Strategy

If A thinks that D reasons at level 1, then A can reason at level 2 and select its

level-2 action x2
1,t (8.4) to best-respond to level-1 action x1

2,t (8.5) selected by D,

the latter of which can be computed/simulated byA in a similar manner as (8.3):

x2
1,t , arg maxx1∈X1

α1,t(x1,x
1
2,t) , (8.4)
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x1
2,t , arg maxx2∈X2

Ex0
1,t∼P0

1,t
[α2,t(x

0
1,t,x2)] . (8.5)

In the general case, if A thinks that D reasons at level k − 1 ≥ 2, then A can

reason at level k ≥ 3 and select its level-k action xk1,t (8.6) that best-responds to

level-(k − 1) action xk−1
2,t (8.7) selected by D:

xk1,t , arg maxx1∈X1
α1,t(x1,x

k−1
2,t ) , (8.6)

xk−1
2,t , arg maxx2∈X2

α2,t(x
k−2
1,t ,x2) . (8.7)

Since A thinks that D’s level-(k − 1) action xk−1
2,t (8.7) is derived using the same

recursive reasoning process, xk−1
2,t best-responds to level-(k − 2) action xk−2

1,t

selected by A, the latter of which in turn best-responds to level-(k − 3) action

xk−3
2,t selected byD and can be computed in the same way as (8.6). This recursive

reasoning process continues until it reaches the base case of the level-1 action

selected by either (a) A (8.3) if k is odd (in this case, recall from Section 8.3.1.2

that A requires knowledge of D’s level-0 strategy P0
2,t to compute (8.3)), or (b)

D (8.5) if k is even. Note that A has to perform the computations made by D to

derive xk−1
2,t (8.7) as well as the computations to best-respond to xk−1

2,t via (8.6).

Our next main result (see its proof in Appendix E.3) bounds the regret ofA when

using R2-B2 for level-k ≥ 2 reasoning:

Theorem 8.3. Let δ ∈ (0, 1). Suppose that A and D use R2-B2 (Algorithm 8.1)

for level-k ≥ 2 and level-(k − 1) reasoning, respectively. Then, with probability

of at least 1− δ, R1,T ≤
√
C1TβTγT .

Theorem 8.3 reveals that R1,T grows sublinearly in T .4 So, A using R2-B2

for level-k ≥ 2 reasoning achieves asymptotic no regret regardless of D’s level-0

strategy P0
2,t. By comparing Theorems 8.1 and 8.3, we can observe that ifA uses
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GP-MW as its level-0 strategy, then it can achieve faster asymptotic convergence

to no regret by using R2-B2 to reason at level k ≥ 2 and one level higher than D.

However, whenA reasons at a higher level k, its computational cost grows due to

an additional optimization of the GP-UCB acquisition function per increase in

level of reasoning. So, A is expected to favor reasoning at a lower level, which

agrees with the observation in the work of (Camerer et al., 2004) on the cognitive

hierarchy model that humans usually reason at a level no higher than 2.

8.3.2 R2-B2-Lite

We also propose a computationally cheaper variant of R2-B2 for level-1 reasoning

called R2-B2-Lite at the expense of a weaker convergence guarantee. When using

R2-B2-Lite for level-1 reasoning, instead of following (8.3), A selects its level-1

action x1
1,t by sampling x̃0

2,t from level-0 strategy P0
2,t of D and best-responding

to this sampled action:

x1
1,t , arg maxx1∈X1

α1,t(x1, x̃
0
2,t) . (8.8)

Our final main result (its proof is in Appendix E.4) bounds the expected regret of

A using R2-B2-Lite for level-1 reasoning:

Theorem 8.4. Let δ ∈ (0, 1). Suppose that A uses R2-B2-Lite for level-1

reasoning andD uses mixed strategy P0
2,t for level-0 reasoning. If the trace of the

covariance matrix of x0
2,t ∼ P0

2,t is not more than ωt for t = 1, . . . , T , then with

probability of at least 1 − δ, E[R1,T ] = O(
∑T

t=1

√
ωt +

√
TβTγT ) where the

expectation is with respect to the history of actions selected and payoffs observed

by D as well as x̃0
2,t for t = 1, . . . , T .

From Theorem 8.4, the expected regret bound tightens if D’s level-0 mixed

strategy P0
2,t has a smaller variance for each dimension of input action x0

2,t. As a

result, the level-0 action x̃0
2,t of D that is sampled by A tends to be closer to the
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true level-0 action x0
2,t selected by D. Then, A can select level-1 action x1

1,t that

best-responds to a more precise estimate x̃0
2,t of the level-0 action x0

2,t selected

by D, hence improving its expected payoff. Theorem 8.4 also reveals that A

using R2-B2-Lite for level-1 reasoning achieves asymptotic no expected regret

if the sequence (ωt)t∈Z+ uniformly decreases to 0 (i.e., ωt+1 < ωt for t ∈ Z+

and limT→∞ ωT = 0). Interestingly, such a sufficient condition for achieving

asymptotic no expected regret has a natural and elegant interpretation in terms

of the exploration-exploitation trade-off: This condition is satisfied if D uses

a level-0 mixed strategy P0
2,t with a decreasing variance for each dimension of

input action x0
2,t, which corresponds to transitioning from exploration (i.e., a

large variance results in a diffused P0
2,t and hence many actions being sampled)

to exploitation (i.e., a small variance results in a peaked P0
2,t and hence fewer

actions being sampled).

8.4 Experiments and Discussion

This section empirically evaluates the performance of our R2-B2 algorithm and

demonstrates its generality using synthetic games, adversarial ML, and MARL.

Some of our experimental comparisons can be interpreted as comparisons with

existing baselines used as level-0 strategies (Section 8.3.1.1). Specifically, we

can compare the performance of our level-1 agent with that of a baseline method

when they are against the same level-0 agent. Moreover, in constant-sum games,

we can perform a more direct comparison by playing our level-1 agent against

an opponent using a baseline method as a level-0 strategy (Section 8.4.2.2).

Additional experimental details and results are reported in Appendix E.6 due to

lack of space. All error bars represent standard error.

115



8.4. EXPERIMENTS AND DISCUSSION

� �� ��� ���
����������

���

��� �������������

�������������

��������������������������

�������������

�������������

� �� ��� ���
����������

���

���

���

� �� ��� ���
����������

���

���

���

(a) (b) (c)

Figure 8.2: Mean regret of agent 1 in synthetic games for the (a) common-payoff
game, (b) general-sum game, and (c) constant-sum game. The legend in (a)
represents the levels of reasoning of agents 1 vs. 2.

8.4.1 Synthetic Games

Firstly, we empirically evaluate the performance of R2-B2 using synthetic games

with two agents whose payoff functions are sampled from GP over a discrete

input domain. Both agents use GP-MW and R2-B2/R2-B2-Lite for level-0 and

level-k ≥ 1 reasoning, respectively. We consider 3 types of games: common-

payoff, general-sum, and constant-sum games. Figs. 8.2a to 8.2c show results

of the mean regret5 of agent 1 averaged over 10 random samples of GP and 5

initializations of 1 randomly selected action with observed payoff per sample:

In all types of games, when agent 1 reasons at one level higher than agent 2, it

incurs a smaller mean regret than when reasoning at level 0 (blue curve), which

demonstrates the performance advantage of recursive reasoning and corroborates

our theoretical results (Theorems 8.2 and 8.3). The same can be observed for

agent 1 using R2-B2-Lite for level-1 reasoning (orange curve) but it does not

perform as well as that using R2-B2 (red curve), which again agrees with our

theoretical result (Theorem 8.4). Moreover, comparing the red (orange) and blue

curves shows that when against the same level-0 agent, our R2-B2 (R2-B2-Lite)

level-1 agent outperforms the baseline method of GP-MW (as a level-0 strategy).

Figs. 8.2a and 8.2c also reveal the effect of incorrect thinking of the level of

5The mean regret T−1
∑T
t=1(maxx1∈X1,x2∈X2

f1(x1,x2) − f1(x1,t,x2,t)) of agent 1 pes-
simistically estimates (i.e., upper bounds) R1,T /T (8.1) and is thus not expected to converge to 0.
Nevertheless, it serves as an appropriate performance metric here.
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reasoning of the other agent on its performance: Since agent 2 uses recursive

reasoning at level 1 or more, agent 2 thinks that it is reasoning at one level higher

than agent 1. However, it is in fact reasoning at one level lower in these two figures.

In common-payoff games, since agents 1 and 2 have identical payoff functions, the

mean regret of agent 2 is the same as that of agent 1 in Fig. 8.2a. So, from agent

2’s perspective, it benefits from such an incorrect thinking in common-payoff

games. In constant-sum games, since the payoff function of agent 2 is negated

from that of agent 1, the mean regret of agent 2 increases with a decreasing mean

regret of agent 1 in Fig. 8.2c. So, from agent 2’s viewpoint, it hurts from such an

incorrect thinking in constant-sum games. Further experimental results on such

incorrect thinking are reported in Appendix E.6.1.1b.

An intriguing observation from Figs. 8.2a to 8.2c is that when agent 1 reasons

at level k ≥ 2, it incurs a smaller mean regret than when reasoning at level 1.

A possible explanation is that when agent 1 reasons at level k ≥ 2, its selected

level-k action (8.6) best-responds to the actual level-(k − 1) action (8.7) selected

by agent 2. In contrast, when agent 1 reasons at level 1, its selected level-1

action (8.3) maximizes the expected value of GP-UCB w.r.t. agent 2’s level-0

mixed strategy rather than the actual level-0 action selected by agent 2. However,

as we shall see in the experiments on adversarial ML in Section 8.4.2.1, when

the expectation in level-1 reasoning (8.3) needs to be approximated via sampling

but insufficient samples are used, the performance of level-k ≥ 2 reasoning can

be potentially diminished due to propagation of the approximation error from

level 1.

Moreover, Fig. 8.2c shows another interesting observation that is unique

for constant-sum games: Agent 1 achieves a significantly better performance

when reasoning at level 3 (i.e., agent 2 reasons at level 2) than at level 2 (i.e.,

agent 2 reasons at level 1). This can be explained by the fact that when agent

2 reasons at level 2, it best-responds to the level-1 action of agent 1, which
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is most likely different from the actual action selected by agent 1 since agent

1 is in fact reasoning at level 3. In contrast, when agent 2 reasons at level 1,

instead of best-responding to a single (most likely wrong) action of agent 1, it

best-responds to the expected behavior of agent 1 by attributing a distribution

over all actions of agent 1. As a result, agent 2 suffers from a smaller performance

deficit when reasoning at level 1 (i.e., agent 1 reasons at level 2) compared with

reasoning at level 2 (i.e., agent 1 reasons at level 3) or higher. Therefore, agent 1

obtains a more dramatic performance advantage when reasoning at level 3 (gray

curve) due to the constant-sum nature of the game. A deeper implication of this

insight is that although level-1 reasoning may not yield a better performance than

level-k ≥ 2 reasoning as analyzed in the previous paragraph, it is more robust

against incorrect estimates of the opponent’s level of reasoning in constant-sum

games.

Experimental results on the use of random search and EXP3 (Section 8.3.1.1)

for level-0 reasoning (instead of GP-MW) are reported in Appendix E.6.1.1c;

the resulting observations and insights are consistent with those presented here.

This demonstrates the robustness of R2-B2 and corroborates the generality of

our theoretical results (Theorems 8.2 and 8.3) which hold for any level-0 strategy

of the other agent. We have also performed experiments using synthetic games

involving more than two agents (Appendix E.6.1.2), which yield some interesting

observations that are consistent with our theoretical analysis.

8.4.2 Adversarial Machine Learning

8.4.2.1 R2-B2 for Adversarial ML

Weapply ourR2-B2 algorithm to black-box adversarialML for image classification

problems with deep neural networks (DNNs) using the MNIST and CIFAR-10

image datasets. We consider evasion attacks (Goodfellow et al., 2015; Yuan
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et al., 2019): The attacker A perturbs a test image in order to fool a fully trained

DNN (referred to as the target ML model hereafter) into misclassifying the

image, while the defender D transforms the perturbed image with the goal of

ensuring the correct prediction by the classifier. To improve query efficiency,

dimensionality reduction techniques such as autoencoders have been commonly

used for black-box adversarial attacks (Tu et al., 2019). In our experiments,

variational autoencoders (VAE) (Kingma and Welling, 2014) are used by bothA

and D to project the images to a lower-dimensional space (i.e., 2D for MNIST

and 8D for CIFAR-10).6 Following a common practice in adversarial ML, we

focus on perturbations with bounded infinity norm as actions of A and D: The

maximum allowed perturbation to each pixel added by either A or D is no more

than a pre-defined value ε where ε = 0.2 for MNIST and ε = 0.05 for CIFAR-10.

We consider untargeted attacks whereby the goal of A (D) is to cause (prevent)

misclassification by the target ML model. So, the payoff function of A is the

maximum predictive probability among all incorrect classes (referred to as attack

score hereafter) and its negation is the payoff function of D. As a result, the

application of R2-B2 to black-box adversarial ML represents a constant-sum game.

An attack is considered successful if the attack score is larger than the predictive

probability of the correct class, hence resulting in misclassification of the test

image. Both A and D use GP-MW/random search7 and R2-B2/R2-B2-Lite for

level-0 and level-k ≥ 1 reasoning, respectively.

Figs. 8.3a to 8.3c show results of the attack score of A in adversarial ML for

both image datasets while Table 8.1 shows results of the number of successful

attacks by A over 150 iterations of the game; the results are averaged over 10

initializations of 5 randomly selected actions with observed payoffs.8 It can be

6We have detailed in Appendix E.6.2.1a how VAE can be realistically incorporated into our
algorithm.

7For CIFAR-10 dataset, A uses only random search for level-0 reasoning due to high
dimensions, as explained in Appendix E.6.2.1a.

8The results here use a test image from each dataset that can clearly illustrate the effects of
both attack and defense. Refer to Appendix E.6.2.1b for more details and results using more test
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Figure 8.3: Attack score of A in adversarial ML for MNIST using (a) random
search and (b) GP-MW as the level-0 strategy, and (c) CIFAR-10 using random
search as the level-0 strategy. The legend in (a) represents the levels of reasoning
of A vs. D.

observed from Figs. 8.3a to 8.3c that when A reasons at one level higher than

D (orange, red, and gray curves), its attack score is higher than when reasoning

at level 0 (blue, green, and purple curves). Similarly, when D reasons at one

level higher (green, purple, and yellow curves), the attack score of A is reduced.

These observations demonstrate the performance advantage of using recursive

reasoning in adversarial ML. Such an advantage of recursive reasoning can also

be seen from Table 8.1: For MNIST, when random search is used for level-0

reasoning and A reasons at one level higher than D, it achieves a larger number

of successful attacks (12.8, 10.2, and 3.0) than when reasoning at level 0 (2.6, 0.8,

and 1.8). Similarly, when D reasons at one level higher, it reduces the number of

successful attacks by A (0.8, 1.8, and 0.9) than when reasoning at level 0 (2.6,

12.8, and 10.2). The observations are similar for MNIST with GP-MW for level-0

reasoning as well as for CIFAR-10 (Table 8.1).

The performance advantage of A reasoning at level 2 is observed to be

smaller than that at level 1; this may be explained by the propagation of error of

approximating the expectation in level-1 reasoning (8.3), as explained previously

in Section 8.4.1. We investigate and report the effect of the number of samples for

such an approximation in Appendix E.6.2.1c, which reveals that the performance

improves with more samples, albeit with higher computational cost. Moreover,

images; the observations are consistent with those presented here.
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Table 8.1: Average number of successful attacks by A over 150 iterations in
adversarial ML for MNIST and CIFAR-10 datasets where the levels of reasoning
are in the form of A vs. D.

Levels of reasoning MNIST (random) MNIST (GP-MW) CIFAR-10
0 vs. 0 2.6 4.3 70.1
1 vs. 0 12.8 6.0 113.1

1 vs. 0 (R2-B2-Lite) 10.2 6.8 99.7
0 vs. 1 0.8 0.4 25.2

0 vs. 1 (R2-B2-Lite) 1.8 1.0 29.7
2 vs. 1 3.0 5.2 70.9
1 vs. 2 0.9 0.4 54.0

some insights can also be drawn regarding the consequence of an incorrect

thinking about the opponent’s level of reasoning in constant-sum games. For

example, for the gray curves in Figs. 8.3a to 8.3c, D reasons at level 1 because it

thinks that A reasons at level 0. However, A is in fact reasoning at level 2. As a

result, in this constant-sum game, D’s incorrect thinking about the opponent’s

level of reasoning negatively impacts D’s performance since the attack scores are

increased. This is consistent with the corresponding analysis in synthetic games

regarding the effect of incorrect thinking about the level of reasoning of the other

agent (Section 8.4.1).

8.4.2.2 Comparison with State-of-the-art Adversarial Attack Methods

It was mentioned in Section 8.3.1 that our theoretical results hold for any level-0

strategy of the other agent. So, any existing adversarial attack (defense) method

can be used as the level-0 strategy of A (D). In this experiment, we perform a

direct comparison of R2-B2 with the state-of-the-art black-box adversarial attack

method called Parsimonious (Moon et al., 2019): We use Parsimonious as the

level-0 strategy of A and let D use R2-B2 for level-1 reasoning. We consider

a realistic setting where in each iteration, D only needs to receive the image

perturbed by A and choose its action that best-responds to this perturbed image.

In this manner, D naturally has access to the history of actions selected by A (as
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required by perfect monitoring in our repeated game) since it receives all images

perturbed by A. Additional details of the experimental setting are reported in

Appendix E.6.2.2a.

We randomly select 70 images from the CIFAR-10 dataset that are successfully

attacked by Parsimonious using ε = 0.05 over 500 iterations without the defender

D.9 Our level-1 R2-B2 defender manages to completely prevent any successful

attacks for 53 of these images and requires Parsimonious to use more than 3.5

times more queries on average to succeed for 10 other images.10 Fig. 8.4 shows

results of the loss incurred by Parsimonious (i.e., its original attack objective)

with and without our level-1 R2-B2 defender for 4 of the successfully defended

images; results for other images are shown in Appendix E.6.2.2a. This experiment

not only demonstrates the generality of our R2-B2 algorithm, but can also be of

significant independent interest to the adversarial ML community as a defense

method against black-box adversarial attacks.

In addition, as another comparison, we use the same experimental setting with

the CIFAR-10 dataset in Section 8.4.2.1 and play Parsimonious against a level-0

defender using random search. The results show that when against the same

level-0 defender, Parsimonious achieves a significantly smaller average number

of successful attacks (27.6) compared with our level-1 attacker (113.1, as shown

in Table 8.1). In other words, our level-1 defender can defend effectively against

Parsimonious, while our level-1 attacker can attack better than Parsimonious.

Note that the unsatisfactory performances of Parsimonious in our experiments

might be largely explained the fact that it does not consider the presence of a

defender. Moreover, our level-1 R2-B2 defender can also defend against black-box

adversarial attacks from standard BO algorithms (Appendix E.6.2.2b)11, which

9Compared to the work of (Moon et al., 2019), we use fewer iterations and a larger ε, which we
think is more realistic as attacks with an excessively large no. of queries may be easily detected.

10The remaining 7 images are so easy to attack such that the attacks are already successful
during the initial exploration phase of our level-1 R2-B2 defender.

11The BO attacker here only takes its perturbations as inputs and thus does not consider the
defender.
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Figure 8.4: Loss incurred by Parsimonious with and without our level-1 R2-
B2 defender on 4 randomly selected images that are successfully attacked by
Parsimonious.

have become popular recently (Ru et al., 2020).

8.4.3 Multi-Agent Reinforcement Learning

We apply R2-B2 to policy search for MARL with more than two agents. Each

action of an agent represents a particular set of policy parameters controlling the

behavior of the agent in an environment. The payoff to each agent corresponding

to a selected set of its policy parameters (i.e., action) is its mean return (i.e.,

cumulative reward) from the execution of all the agents’ selected policies across

5 independent episodes. Since the agents interact in the environment, the payoff

function of each agent depends on the policies (actions) selected by all agents. We

use the predator-prey game from the widely used multi-agent particle environment

in (Lowe et al., 2017). This 3-agent game (see Fig. E.11 in Appendix E.6.3)

contains two predators who are trying to catch a prey. The prey is rewarded for

being far from the predators and penalized for stepping outside the boundary.

The two predators have identical payoff functions and are rewarded for being

close to the prey (if the prey stays within the boundary). So, the predator-prey

game represents a general-sum game. All agents use random search12 and R2-B2

12All agents use only random search for level-0 reasoning due to high dimensions, as explained
in Appendix E.6.3.
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for level-0 and level-k ≥ 1 reasoning, respectively.

Fig. 8.5 shows results of the (scaled) mean return of the agents averaged

over 10 initializations of 5 randomly selected actions with observed payoffs. It

can be observed from Fig. 8.5b that when the prey reasons at level 1 and both

predators reason at level 0 (orange curve), its mean return is much higher than

when reasoning at level 0 (blue curve); this results from the prey’s ability to

learn to stay within the boundary. Specifically, there exist some “dominated

actions” in this game, namely, those causing the prey to step beyond the boundary.

Regardless of the predators’ policies, such dominated actions never give large

returns to the prey and are thus likely to yield small values of GP-UCB for any

actions (policies) selected by the predators. So, by reasoning at level 1 (i.e., by

maximizing the expected value of GP-UCB), the prey is able to eliminate those

dominated actions and thus learn to stay within the boundary. From Fig. 8.5a, the

mean return of the predators is also improved (orange curve) because the prey’s

ability to stay within the boundary allows the predators to improve their rewards

by being close to the prey despite using random search for level-0 reasoning.

In contrast, when the prey reasons at level 0, the predators rarely get rewarded

(blue curve) since the prey repeatedly steps beyond the boundary. On the other

hand, when predator 1 reasons at level 2 (purple curve), the mean return of the

predators is further increased since predator 1 is now able to learn to actively

move close to the prey instead of moving around using random search for level-0

reasoning (orange curve). When both predators reason at level 2 (green curve),

their mean return is improved even further. In both of these scenarios, the mean

return of the prey stays close to that associated with the orange curve: Although

the predators are able to actively approach the prey, this also further helps to

prevent the prey from moving beyond the boundary, which compensates for the

loss in its mean return due to the more strategic predators.
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(a) predators (b) prey

Figure 8.5: Mean return of predators and prey in predator-prey game where the
legend in (b) represents the levels of reasoning of predator 1 vs. predator 2 vs.
prey.

8.5 Conclusion

This chapter describes the first BO algorithm called R2-B2 that is endowed

with the capability of recursive reasoning to model the reasoning process in the

interactions between boundedly rational1, self-interested agents with unknown,

complex, and expensive-to-evaluate payoff functions in repeated games. We

prove that by reasoning at level k ≥ 2 and one level higher than the other

agents, our R2-B2 agent can achieve faster asymptotic convergence to no regret

than that without utilizing recursive reasoning. We empirically demonstrate the

competitive performance and generality of R2-B2 through extensive experiments

using synthetic games, adversarial ML, and MARL.

125



Chapter 9

Conclusion

9.1 Summary

This thesis has presented five works that improve the sample efficiency of BO for

AutoML or extend the applicability of BO to other important ML applications.

As illustrated in Fig. 1.1, these five works can be categorized according to

whether they focus on AutoML or other ML applications, and by whether they

are developed for the single-agent or multi-agent setting. Each of the five new

BO algorithms presented in this thesis is equipped with a theoretical convergence

guarantee and has been shown to perform effectively in real-world experiments.

Chapter 4. Many ML models require an iterative training process such

as stochastic gradient descent. When using BO for hyperparameter tuning of

ML models, the training of some ML models that end up under-performing

may be early-stopped to save resource and improve the epoch efficiency. In

Chapter 4, we have introduced the BO with Bayesian optimal stopping (BO-BOS)

algorithm, which incorporates BOS into BO in a principled manner, equipping

BO with the ability to early-stop the training of unpromising hyperparameters

while maintaining its trademark asymptotic no-regret property.

Chapter 5. The typical federated learning (FL) setting uses first-order
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(gradient-based) optimization techniques. However, some ML tasks in the FL

setting, such as hyperparameter tuning, lack access to gradients and hence require

zeroth-order optimization methods such as BO. In Chapter 5, we have introduced

the federated Thompson sampling (FTS) algorithm, which modifies BO for the

FL setting. FTS overcomes a number of major challenges faced by federated

BO: FTS uses random Fourier features approximation to avoid the sharing of

raw data, employs Thompson sampling to improve its communication efficiency,

and ensures its robustness against heterogeneous agents by offering a robust

convergence guarantee.

Chapter 6. Although the above-mentioned FTS algorithm is able to avoid

sharing the raw data, it is not equipped with a rigorous privacy guarantee, which

is an important consideration in FL. In Chapter 6, we have integrated user-level

differential privacy (DP) into FTS by following a general DP framework. In

addition, we have leveraged the ability of the general DP framework to handle

different parameter vectors, as well as the technique of local modeling for BO,

to further improve the utility of our algorithm through distributed exploration

(DE). The resulting differentially private FTS with DE (DP-FTS-DE) algorithm

is amenable to a number of theoretical insights on the privacy-utility trade-off,

and achieves competitive utilities with strong privacy guarantees in real-world

experiments.

Chapter 7. When using BO to optimize the hyperparameters of an ML model

using a dataset, we often have access to previous completed hyperparameter

optimization tasks using other potentially related datasets. This prompts the

question as to whether we can leverage these previous experiences to accelerate

the current BO task through meta-learning, while ensuring robustness against

harmful dissimilar tasks. In Chapter 7, we have introduced a scalable, principled

and robust meta-BO algorithm: robust meta-GP-UCB (RM-GP-UCB), which

uses a weighted combination of the acquisition functions from different tasks for
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query selection. RM-GP-UCB is asymptotically no-regret even when all previous

tasks are dissimilar to the current task, and is amenable to a principled method to

learn the weights assigned to each previous task through regret minimization via

online learning. RM-GP-UCB performs competitively and consistently across a

wide range of real-world experiments.

Chapter 8. Some ML tasks such as adversarial ML can be modeled as

repeated games between boundedly rational, self-interested agents with unknown,

complex, and costly-to-evaluate payoff functions. InChapter 8, we have introduced

the Recursive Reasoning-Based BO (R2-B2) algorithm, which is a recursive

reasoning formalism of BO that provides efficient strategies for players in this

type of game. Under certain conditions, using R2-B2 to reason at one level higher

than the other agents leads to improved convergence compared with not using

recursive reasoning. R2-B2 is also shown to be practically effective in adversarial

ML and multi-agent reinforcement learning experiments.

9.2 Future Outlook

9.2.1 Towards More Practical Collaborative/Federated BO

The ever-increasing computational capability of edge devices, coupled with

increasing awareness of and regulations on data privacy, has prompted a surging

interest in extending ML to the collaborative/federated setting (Kairouz et al.,

2019; Li et al., 2019b). Many AutoML tasks, such as hyperparameter tuning and

neural architecture search, require zeroth-order optimization methods such as BO.

In this regard, we have extended BO to the federated setting (Chapters 5 and 6),

hence allowing multiple agents (e.g., edge devices, hospitals, etc.) to collaborate

in zeroth-order optimization tasks without violating the privacy of individual

agents. However, to further promote the practical application of our FTS and

DP-FTS-DE algorithms (Chapters 5 and 6) in the federated BO setting, a number
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of other important issues remain to be addressed. For example, fairness in ML

has been receiving increasing attention in recent years, which makes fairness

among agents an important consideration in collaborative/federated ML (Li et al.,

2020c); providing incentives for agents to participate is critical for initiating

and sustaining the collaboration/federation (Sim et al., 2020); robustness against

malicious agents is required to ensure the reliability of collaborative/federated

ML algorithms (Blanchard et al., 2017). Therefore, integrating these important

considerations into our algorithms for the FBO setting represents a promising

direction for future research. Moreover, in addition to BO, another interesting

potential direction is to extend other classes of algorithms for sequential decision-

making under uncertainty (e.g., multi-armed bandit, reinforcement learning,

active learning, etc.) to the collaborative/federated setting, to allow a wider range

of tasks to be performed in this setting.

9.2.2 More Applications of BO beyond ML

Although BO has gained most of its visibility through its applications in AutoML,

BO is a general black-box optimization method with impressive sample efficiency

and is hence suitable for a wide range of applications beyond ML. Firstly,

as we have discussed in Section 1.1 (second last paragraph), our algorithms

in this thesis can also find other interesting applications beyond ML such as

precision agriculture, patient selection for medical tests, etc. Thus, it would be

interesting to apply our algorithms in this thesis to these scenarios and other

potential applications. Secondly, some real-world experimental design problems

are amenable to the application of BO yet require customized modifications

to standard BO algorithms to adapt to their problem structures. For example,

applying BO to molecule design requires a customized kernel to measure the

similarity between molecules (Korovina et al., 2020). Therefore, it is promising

to explore novel applications of BO to more real-world experimental design
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problems to improve the efficiency of scientific discovery, where it would be

interesting to investigate the required modifications to existing BO algorithms as

well as their implications on the existing theoretical guarantees.
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Appendix A

Appendix for Chapter 4

A.1 Approximate Backward Induction for Bayesian

Optimal Stopping

In this section, we will present a commonly-used approximate backward induction

algorithm for solving the BOS problem. The algorithm uses summary statistics

to compactly represent the posterior belief P(θt|yt,n) which is computed from the

prior belief P(θt) and the noisy outputs yt,n observed up till epoch n in iteration

t.

In the approximate backward induction algorithm of (Müller et al., 2007),

the entire space of summary statistics is firstly partitioned into a number of

discrete intervals in each epoch, which results in a two-dimensional domain

with one axis being the number of epochs and the other axis representing the

discretized intervals of the summary statistic (i.e., assuming the summary statistic

is one-dimensional). In the beginning, a number of sample paths are generated

through forward simulation: Firstly, a large number of samples are drawn from

the prior belief P(θt). Then, for each sample drawn from P(θt), an entire sample

path is generated from epochs 1 to N through repeated sampling. In this manner,

each sample path leads to a curve in the 2-D domain and fully definesN posterior
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beliefs with one in each epoch. Starting from the last epoch N , for each interval,

the expected loss of a terminal decision d1 or d2 is evaluated for every sample

path ending in this interval (since each such sample path ends with a particular

posterior belief in epochN ), and their empirical average is used to approximate the

expected loss of the particular terminal decision for this interval. The minimum

of the expected losses among the two terminal decisions is the expected loss for

this particular interval, which is equivalent to (4.1) except that decision d0 is not

available in the last epoch N .

Next, the algorithm proceeds backwards from epoch n = N − 1 all the way

to epoch n = 1. In each epoch n, the expected loss of each terminal decision is

evaluated in the same way as that in the last epoch N , as described above. To

evaluate the expected loss of the continuation decision for an interval, for each

sample path passing through this interval, the expected loss for the interval that

it passes through in the next epoch n + 1 is recorded and an average of all the

recorded expected losses in the next epoch n+ 1 is summed with the cost cd0 of

observing the noisy output yt,n+1 to yield the expected loss of the continuation

decision d0 for this particular interval; this is equivalent to approximating the

Eyt,n+1|yt,n [ρt,n+1(yt,n+1)] + cd0 term in (4.1) via Monte Carlo sampling of the

posterior belief P(yt,n+1|yt,n). Following (4.1), the minimum of the expected

losses among all terminal and continuation decisions is the expected loss for

this particular interval and the corresponding decision is recorded as the optimal

decision when the summary statistic falls into this interval. Then, the algorithm

continues backwards until epoch n = 1 is reached. After the algorithm has

finished running, the optimal decision computed in every pair of epoch and

interval will form the optimal decision rules which serve as the output of the

approximate backward induction algorithm.
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A.2 Approximate Backward Induction Algorithm

for Solving BOS Problem in BO-BOS

In this section, we will describe the approximate backward induction algorithm

for solving the BOS problem (line 5) in each iteration of BO-BOS (Algorithm 4.1),

which is adapted from the algorithm introduced in Appendix A.1.

To account for Assumption 4.1b in the approximate backward induction

algorithm, we adopt the kernel k introduced in (Swersky et al., 2014) to incorporate

the inductive bias that the learning curve (in the form of validation error) of the

ML model is approximately exponentially decreasing in the number of training

epochs, which can be expressed as

k(n, n′) ,
∫ ∞

0

exp(−λn) exp(−λn′) φ(λ) dλ =
βα

(n+ n′ + β)α
(A.1)

for all epochs n, n′ = 1, . . . , N where φ is a probability measure over λ that is

chosen to be a Gamma prior with parameters α and β. The above kernel (A.1)

is used to fit a GP model to the validation errors 1 − yt,N0 of the ML model

trained using xt for a fixed number N0 of initial epochs (e.g., N0 = 8 in all our

experiments whenN = 50), specifically, by computing the values of parametersα

and β in (A.1) via Bayesian update (i.e., assuming that the validation errors follow

the Gamma conjugate prior with respect to an exponential likelihood). Samples

are then drawn from the resulting GP posterior belief for forward simulation of

sample paths from epochs N0 + 1 to N , which are used to estimate the P(θt|yt,n)

and P(yt,n+1|yt,n) terms necessary for approximate backward induction. Fig. A.1

plots some of such sample paths and demonstrates that the GP kernel in (A.1)

can characterize a monotonic learning curve (Assumption 4.1b) well.

Following the practices in related applications of BOS (Brockwell and

Kadane, 2003; Jiang et al., 2013; Müller et al., 2007), the average validation
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Figure A.1: Forward simulation of some sample paths drawn from a GP posterior
belief based on the kernel in (A.1).

error (or, equivalently, average validation accuracy) over epochs 1 to n is used

as the summary statistics. Firstly, the entire space of summary statistics is

partitioned into a number of discrete intervals in each epoch, which results in

a two-dimensional domain with one axis being the number of epochs and the

other axis representing the discretized intervals of the summary statistic (i.e.,

average validation error). Next, a forward simulation of a large number (i.e.,

100, 000 in all our experiments) of sample paths is performed using the GP kernel

in (A.1), as described above. Each sample path corresponds to a curve in the

2-D domain. Starting from the last epoch N , for each interval, we consider all

sample paths ending in this interval and use the proportion of such sample paths

with a validation accuracy (from model training for N epochs) larger than the

currently found maximum (offset by a noise correction term) to estimate the

posterior probability P(θt = θt,2|yt,N) = P(f([xt, N ]) > y∗t−1 − ξt|yt,N), which

is in turn used to evaluate the expected losses of the terminal decisions d1 and d2

for this interval.1 The minimum of the expected losses among the two terminal

decisions is the expected loss for this particular interval.

Next, the algorithm proceeds backwards from epoch n = N − 1 all the way

to epoch n = N0 + 1. In each epoch n, the expected loss of each terminal

1In contrast to the approximate backward induction algorithm of (Müller et al., 2007)
(Appendix A.1), we employ a computationally cheaper way to approximate the expected losses of
the terminal decisions for an interval.
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decision is evaluated in the same way as that in the last epoch N , as described

above. The expected loss of the continuation decision d0 is evaluated in the same

way as that in Appendix A.1: For each sample path passing through an interval

in epoch n, the expected loss for the interval that it passes through in the next

epoch n + 1 is recorded and an average of all the recorded expected losses in

the next epoch n + 1 is summed with the cost cd0 of observing the validation

accuracy yt,n+1 to yield the expected loss of the continuation decision d0 for

this particular interval. Note that this step is equivalent to approximating the

Eyt,n+1|yt,n [ρt,n+1(yt,n)] term in (4.1) via Monte Carlo sampling of the posterior

belief P(yt,n+1|yt,n). Following (4.1), the minimum of expected losses among

all terminal and continuation decisions is the expected loss for this particular

interval and the corresponding decision is recorded as the optimal decision to

be recommended when the summary statistic falls into this particular interval.

Then, the algorithm continues backwards until epoch n = N0 + 1 is reached. We

present in Algorithm 1.1 the pseudocode for the above-mentioned approximate

backward induction algorithm for ease of understanding.

After solving our BOS problem for early stopping in BO using the approximate

backward induction algorithm described above, Bayes-optimal decision rules are

obtained in every pair of epoch and interval. Fig. A.2 shows an example of optimal

decision rules obtained from solving an instance of our BOS problem where the

white, yellow, and red regions correspond to recommending optimal continuation

decision d0 and terminal decisions d1 and d2, respectively. In particular, after

model training under xt to yield the validation error 1 − yt,n in epoch n, the

summary statistic is updated to the average validation error over epochs 1 to n.

The updated summary statistic falls into an interval with a corresponding optimal

decision to be recommended. For example, Fig. A.2 shows that if the summary

statistic falls into the yellow region in any epoch n, then the optimal terminal

decision d1 is recommended to early-stop model training under xt (assuming
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Algorithm 1.1 Approximate Backward Induction Algorithm for Solving BOS
Problem in BO-BOS
1: Partition the domain of summary statistics intoM discrete intervals
2: Train the ML model using xt for N0 epochs
3: Generate a large number of forward simulation samples using kernel (A.1)
4: Let n = N
5: form = 1, 2, . . . ,M do
6: Find all sample paths ending in intervalm at epoch n, denoted as S
7: Estimate P(θt = θt,2|yt,n) = P(f([xt, N ]) > y∗t−1 − ξt|yt,n) by the

proportion of S that end up (after N epochs) having larger validation
accuracy than y∗t−1 − ξt

8: Calculate the expected losses of the terminal decisions d1 and d2 using (4.3)

9: Use the minimum of these two expected losses as the expected loss of
epoch n and intervalm

10: for n = N − 1, N − 2, . . . , N0 + 1 do
11: form = 1, 2, . . . ,M do
12: Find all sample paths passing through intervalm at epoch n, denoted as

S
13: Estimate P(θt = θt,2|yt,n) = P(f([xt, N ]) > y∗t−1 − ξt|yt,n) by the

proportion of S that end up (after N epochs) having larger validation
accuracy than y∗t−1 − ξt

14: Calculate the expected losses of the terminal decisions d1 and d2

using (4.3)
15: ld0,n+1,m = 0
16: for each sample path s in S do
17: ld0,n+1,m = ld0,n+1,m+ the expected loss of the interval reached by s

at epoch n+ 1
18: ld0,n+1,m = ld0,n+1,m/|S|
19: Calculate the expected loss of the continuation decision d0 as:

Eyt,n+1|yt,n [ρt,n+1(yt,n)] + cd0 = ld0,n+1,m + cd0
20: Use the minimum expected losses among d1, d2 and d0 as the ex-

pected loss of epoch n and intervalm (following (4.1)), and record the
corresponding decision as the optimal decision
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Figure A.2: An example of optimal decision rules obtained from solving an
instance of our BOS problem: White, yellow, and red regions correspond to
recommending optimal continuation decision d0 and terminal decisions d1 and
d2, respectively. The sample paths cannot reach the black regions due to the
use of the GP kernel in (A.1) for characterizing a monotonic learning curve
(Assumption 4.1b).

that C2 is satisfied). If the summary statistic falls into any other region, then

model training continues under xt for one more epoch and the above procedure is

repeated in epoch n+ 1 until the last epoch n = N is reached. This procedure,

together with C2, constitutes lines 6 to 9 in Algorithm 4.1.

A.3 Proof of Theorems 4.1 and 4.2

In this section, we prove the theoretical results in this paper.

A.3.1 Regret Decomposition

In this work, it is natural and convenient to define the instantaneous regret at step

t as rt = f(z∗)− f ∗t , in which z∗ is the location of the global maximum: z∗ =

argmaxzf(z), and f ∗t is the maximum observed function value from iterations

1 to t: f ∗t = maxt′=1,...,t f(zt′). Subsequently, the cumulative regret and simple

regret after T iterations are defined as RT =
∑T

t=1 rt and ST = mint=1,...,T rt

respectively. As a result, as long as we can show that RT grows sub-linearly

in T , then we can conclude that the average regret RT
T

asymptotically goes

to 0; therefore, ST vanishes asymptotically since it is upper-bounded by the

average regret: ST ≤ RT
T
. In contrast to the more commonly used definition
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of instantaneous regret: rt = f(z∗) − f(zt), the slightly modified definition

introduced here is justified in the sense that the induced definition of simple

regrets, which is the ultimate goal of the theoretical analysis, obtained in both

cases are equivalent, i.e., mint=1,...,T f(z∗)− f ∗t = mint=1,...,T f(z∗)− f(zt).

The instantaneous regret defined above can be further decomposed as

rt =f(z∗)− f ∗t = f(z∗)− max
t′=1,...,t

f(zt′)

=f(z∗)−max{f ∗t−1, f(zt)}
(A.2)

Note that in our algorithm, the BO iterations can be divided into two types:

1) t+ such that nt+ = N : those iterations that are not early-stopped; and 2)

t− such that nt− < N : those that are early-stopped. For all t+, it follows

from Equation A.2 that rt = f(z∗) − max{f ∗t−1, f(zt)} ≤ f(z∗) − f(zt) =

f(z∗) − f([xt, nt]) = f(z∗) − f([zt, N ]) , rt+; for all t−, from Equation

A.2, we have that rt = f(z∗) − max{f ∗t−1, f(zt)} ≤ f(z∗) − f ∗t−1 , rt− . In

the following, we will focus on the analysis of the sum of all rt+ and all rt−:

R′T =
∑

t+ rt+ +
∑

t− rt− . As a result of the definition, R′T is an upper bound of

RT , therefore, sub-linear growth of R′T implies that RT also grows sub-linearly.

Next, note that for all t− such that nt− < N (when xt is early-stopped),

rt− = f(z∗)− f ∗t−1 = f(z∗)− f([xt, N ]) + f([xt, N ])− f ∗t−1

(1)

≤ f(z∗)− f([xt, nt]) + f([xt, N ])− f ∗t−1

(A.3)
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in which (1) results from Assumption 4.1. As a result, R′T can be re-written as

R′T
(1)
=

∑
{t|nt=N}

[f(z∗)− f([xt, N ])] +
∑

{t|nt<N}

[f(z∗)− f ∗t−1]

=
∑

{t|nt=N}

[f(z∗)− f([xt, N ])] +
∑

{t|nt<N}

[f(z∗)− f([xt, N ])]+

∑
{t|nt<N}

[f([xt, N ])− f ∗t−1]

(2)

≤
∑

{t|nt=N}

[f(z∗)− f([xt, N ])] +
∑

{t|nt<N}

[f(z∗)− f([xt, nt])]+

∑
{t|nt<N}

[f([xt, N ])− f ∗t−1]

(3)
=

T∑
t=1

[f(z∗)− f([xt, nt])] +
∑

{t|nt<N}

[f([xt, N ])− f ∗t−1]

,
T∑
t=1

rt,1 +
∑

{t|nt<N}

rt,2

, RT,1 +RT,2

(A.4)

in which (1) makes use of the definition of R′T , (2) results from Equation A.3 and

(3) follows by combining the first two terms on the previous line. The first term

following (3) of Equation A.4 is summed over all time steps, whereas the second

term is only summed over those time steps that are early-stopped (nt < N ). As

mentioned earlier, in the sequel, we will attempt to prove an upper bound on the

expected value of R′T ,

E[R′T ] ≤ E[RT,1] + E[RT,2] (A.5)

in which the expectation is taken with respect to the posterior probabilities used

in the BOS problems, corresponding to those iterations that are early-stopped:

Πt∈{t′|t′=1,...,T,nt′<N}P(f([xt, N ]) > y∗t−1 − ξt|yt,nt).
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Note that the probability distributions are independent across all the early-

stopped iterations, therefore, for each early-stopped iteration t, the expectations

of both rt,1 and rt,2 are only taken over the specific distribution: P(f([xt, N ]) >

y∗t−1 − ξt|yt,nt); whereas for each not-early-stopped iteration t, E[rt,1] = rt,1

(whereas rt,2 is absent). In the next two sections, we will prove upper bounds on

E[RT,1] and E[RT,2] respectively.

A.3.2 Upper Bound on E[RT,1]

In this section, we will upper-bound the term E[RT,1]. As mentioned in the main

text, for simplicity, we will focus on the case in which the underlying domain

Z is discrete, i.e., |Z| < ∞. To begin with, we will need a supporting lemma

showing a uniform upper bound over the entire domain.

Lemma A.1. Suppose that δ ∈ (0, 1) and βt , 2 log(|Z|t2π2/6δ). Then, with

probability ≥ 1− δ

|f(z)− µt−1(z)| ≤ β
1/2
t σt−1(z) ∀z ∈ Z, t ≥ 1 .

The proof of lemma D.2 makes use of standard Gaussian tail bounds and a

number of union bounds, and the proof is identical to the proof of lemma 5.1 in

(Srinivas et al., 2010). The next supporting lemma makes use of the Lipschitz

continuity of f to bound the differences between function values whose inputs

only differ by the dimension corresponding to the number of training epochs.

Lemma A.2. Suppose that Assumption 4.2 holds and let δ′ ∈ (0, 1). Then, with

probability ≥ 1− δ′,

|f([x, N ])− f([x, n])| ≤ Nb

√
log

da

δ′
∀x, n = 1, . . . , N .

Proof. Let z = [x, n] denote the input to the objective function f . Assumption

157



A.3. PROOF OF THEOREMS 4.1 AND 4.2

4.2, together with a union bound over j = 1, . . . , d, implies that with probability

≥ 1− dae−(L
b

)2 ,

|f(z)− f(z′)| ≤ L||z− z′||1 ∀z ∈ Z

Since [x, N ] and [x, n] differ only by the dimension corresponding to the number

of training epochs, we have that

|f([x, N ])− f([x, n])| ≤ LN

Then, the lemma follows by letting δ′ = dae−(L
b

)2 .

The next lemma bounds E[rt,1] by the Gaussian process posterior standard

deviation with some scaling constants.

Lemma A.3. Let δ, δ′ ∈ (0, 1) and κ ≥ 1 be the constant used in C2 in the

BO-BOS algorithm. Then, at iteration t of the BO-BOS algorithm, we have that,

with probability ≥ 1− δ − δ′,

E[rt,1] ≤ 2κβ
1/2
t σt−1([xt, nt]) +Nb

√
log

da

δ′
1nt<N .

Proof. Firstly, with probability ≥ 1− δ,

f(z∗)
(1)
= f([x∗, N ])

(2)

≤ µt−1([x∗, N ]) + β
1/2
t σt−1([x∗, N ])

(3)

≤ µt−1([xt, N ]) + β
1/2
t σt−1([xt, N ])

(A.6)

inwhich (1) follows fromAssumption 4.1which states that, for eachx, the function

value is monotonically non-decreasing in the number of training epochs, which

implies that at the (unknown) global maximum z∗, the dimension corresponding

to the number of epochs is equal toN . (2) makes use of Lemma D.2, whereas (3)

is due to the way xt is selected in the algorithm, i.e., xt = argmaxxµt−1([x, N ])+
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√
βtσt−1([x, N ]). As a result, we have that with probability ≥ 1− δ − δ′

E[rt,1] = E[f(z∗)− f([xt, nt])]
(1)

≤ E[β
1/2
t σt−1([xt, N ]) + µt−1([xt, N ])

− f([xt, nt])]

= E[β
1/2
t σt−1([xt, N ]) + µt−1([xt, N ])− f([xt, N ])

+ f([xt, N ])− f([xt, nt])]

(2)

≤ E[2β
1/2
t σt−1([xt, N ])] + E[f([xt, N ])− f([xt, nt])]

(3)

≤ E[2β
1/2
t σt−1([xt, N ])] +Nb

√
log

da

δ′
1nt<N

(4)

≤ 2β
1/2
t σt−1([xt, N ]) +Nb

√
log

da

δ′
1nt<N

(5)

≤ 2κβ
1/2
t σt−1([xt, nt]) +Nb

√
log

da

δ′
1nt<N

(A.7)

in which (1) follows from Equation A.6, and (2) results from Lemma D.2 and the

linearity of the expectation operator. 1nt<N in (3) is the indicator function, which

takes the value of 1 if the event nt < N is true and 0 otherwise. (3) is obtained

by analyzing two different cases separately: if nt = N (xt is not early-stopped),

then E[f([xt, N ]) − f([xt, nt])] = 0; if nt < N (xt is early-stopped), then

E[f([xt, N ]) − f([xt, nt])] ≤ E[Nb
√

log da
δ′

] = Nb
√

log da
δ′

with probability

≥ 1 − δ′ following Lemma A.2. (4) is due to the fact that σt−1([xt, N ]) only

depends on the observations up to step t−1 and is not dependent on the probability

P(f([xt, N ]) > y∗t−1 − ξt|yt,nt). (5) follows from the design of the algorithm;

in particular, if nt < N , then κσt−1([xt, nt]) ≥ σt−1([xt, N ]) is guaranteed by

C2; otherwise, if nt = N , then κσt−1([xt, nt]) ≥ σt−1([xt, nt]) = σt−1([xt, N ])

since κ ≥ 1.

Subsequently, we can upper bound E[RT,1] =
∑T

t=1 E[rt,1] by extensions of

Lemma 5.3 and 5.4 from (Srinivas et al., 2010), which are presented here for

completeness. The following lemma connects the information gain about the

objective function with the posterior predictive variance, whose proof results
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from straightforward extension of Lemma 5.3 of (Srinivas et al., 2010).

Lemma A.4. Let yT be a set of observations of size T , and let fT be the

corresponding function values. The information gain about fT from observing

yT is

I(yT ; fT ) =
1

2

T∑
t=1

log[1 + σ−2σ2
t−1([xt, nt])] .

Next, we use the following lemma to bound the sum of the first term of the

expected instantaneous regret as given in Lemma A.3.

Lemma A.5. Let δ ∈ (0, 1), C1 , 8
log(1+σ−2)

, βt , 2 log(|Z|t2π2/6δ), and

γT , maxA∈Z,|A|=T I(yA; fA) is the maximum information gain about f from

any subset of size T . Then,

T∑
t=1

2β
1/2
t σt−1([xt, nt]) ≤

√
TC1βT I(yT ; fT ) ≤

√
TC1βTγT .

Proof. Firstly, we have that

(2β
1/2
t σt−1([xt, nt]))

2 = 4βtσ
2
t−1([xt, nt])

(1)

≤ 4βTσ
2[σ−2σ2

t−1([xt, nt])]

(2)

≤ 4βTσ
2 σ−2

log(1 + σ−2)
log[1 + σ−2σ2

t−1([xt, nt])]

≤ βT
8

log(1 + σ−2)

1

2
log[1 + σ−2σ2

t−1([xt, nt])]

(A.8)

in which (1) holds since βt is monotonically increasing in t; (2) results from

the fact that σ−2x ≤ σ−2

log(1+σ−2)
log[1 + σ−2x] for x ∈ (0, 1], whereas 0 <

σ2
t−1([xt, nt]) ≤ 1. Next, summing over t = 1, . . . , T , we get

T∑
t=1

(2β
1/2
t σt−1([xt, nt]))

2 ≤ βT
8

log(1 + σ−2)

1

2

T∑
t=1

log[1 + σ−2σ2
t−1([xt, nt])]

(1)
= βT

8

log(1 + σ−2)
I(yT ; fT )

(2)

≤ C1βTγT

(A.9)
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in which (1) results from Lemma A.4, and (2) follows from the definitions of C1

and γT . Next, making use of the Cauchy-Schwarz inequality, we get

T∑
t=1

2β
1/2
t σt−1([xt, nt]) ≤

√
T

√√√√ T∑
t=1

(2β
1/2
t σt−1([xt, nt]))2

≤
√
C1TβTγT

(A.10)

which completes the proof.

Next, putting everything together, we get the follow lemma on the upper

bound on E[RT,1].

Lemma A.6. Suppose that Assumptions 4.1 and 4.2 hold. Let δ, δ′ ∈ (0, 1), C1 =

8/ log(1 +σ−2), βt = 2 log(|Z|t2π2/6δ), κ ≥ 1 be the constant used in C2 in the

BO-BOS algorithm, and γT = maxA∈Z,|A|=T I(yA; fA). Let τT =
∑T

t=1 1nt<N

be the number of BO iterations in which early stopping happens from iterations

1 to T . Assume that f is a sample from a GP, and y(z) = f(z) + ε∀z ∈ Z in

which ε ∼ N(0, σ2). Then, with probability ≥ 1− δ − δ′,

E[RT,1] =
T∑
t=1

E[rt,1] ≤ κ
√
TC1βTγT +Nb

√
log

da

δ′
τT ∀T ≥ 1 .

Proof.

E[RT,1]
(1)
=

T∑
t=1

E[rt,1]
(2)

≤
T∑
t=1

[2κβ
1/2
t σt−1([xt, nt]) +Nb

√
log

da

δ′
1nt<N ]

(3)

≤ κ
√
TC1βTγT +

T∑
t=1

Nb

√
log

da

δ′
1nt<N

= κ
√
TC1βTγT +Nb

√
log

da

δ′

T∑
t=1

1nt<N

= κ
√
TC1βTγT +Nb

√
log

da

δ′
τT

(A.11)
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in which (1) follows from the linearity of the expectation operator, (2) results

from Lemma A.3, and (3) follows from Lemma A.5.

A.3.3 Upper Bound on E[RT,2]

In this section, we prove an upper bound on E[RT,2]. A few supporting lemmas

will be presented and proved first. To begin with, the next lemma derives the

appropriate choice of the incumbent values used in the BOS problems in different

iterations of the BO-BOS algorithm.

Lemma A.7. Let the objective function f be a sample from a GP and y(z) =

f(z) + ε∀z ∈ Z in which ε ∼ N(0, σ2). Let δ′′ ∈ (0, 1). At iteration t > 1,

define f ∗t−1 , maxt′=1,...,t−1 f(zt′) and y∗t−1 , maxt′=1,...,t−1 yt′; for iteration

t = 1, define f ∗0 , 0 and y∗0 , 0. Then with probability ≥ 1− δ′′,

f ∗t−1 ≥ y∗t−1 − ξt ∀t ≥ 1

in which

ξt =

√
2σ2 log

π2t2(t− 1)

6δ′′
∀t > 1

and ξ1 = 0.

Proof. The lemma trivially holds for t = 1. Assume we are at iteration t > 1 of

the BO-BOS algorithm, and let t′ ∈ {1, 2, . . . , t− 1}. Since yt′ = f(zt′) + ε, in

which ε ∼ N(0, σ2), we have that yt′ ∼ N(f(zt′), σ
2). Making use of the upper

deviation inequality for Gaussian distribution and the definition of ξt, we get

P[yt′ ≥ f(zt′) + ξt] ≤ e−
ξt

2

2σ2 =
6δ′′

π2t2(t− 1)
(A.12)

Denote the event that {∃ t′ ∈ {1, 2, . . . , t− 1} s.t. yt′ ≥ f(zt′) + ξt} asAt. Next,

taking a union bound over the entire observation history t′ ∈ {1, 2, . . . , t− 1},
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we get

P[At] ≤
t−1∑
t′=1

P[yt′ ≥ f(zt′) + ξt] ≤ (t− 1)
6δ′′

π2t2(t− 1)
=

6δ′′

π2t2
(A.13)

which implies that at iteration t, with probability ≥ 1 − 6δ′′

π2t2
, yt′ − f(zt′) <

ξt ∀t′ ∈ {1, 2, . . . , t−1}, which further suggests that y∗t−1−f ∗t−1 ≤ ξt at iteration

t. Next, taking a union bound over t ≥ 1, we get

P[∃t ≥ 1 s.t.At holds] ≤
∑
t≥1

P[At] ≤
∑
t≥1

6δ′′

π2t2
= δ′′ (A.14)

which suggests that, with probability ≥ 1 − δ′′, y∗t−1 − f ∗t−1 ≤ ξt ∀t ≥ 1, and

thus completes the proof.

The next lemma shows that, with appropriate choices of the incumbent value,

the posterior probability used in Bayesian optimal stopping is upper-bounded.

Lemma A.8. If in iteration t of the BO-BOS algorithm, the BOS algorithm is

run with the incumbent value y∗t−1 − γt and the corresponding cost parameters

K1, K2 and cd0 , and the algorithm early-stops after nt < N epochs, then with

probability ≥ 1− δ′′,

P(f([xt, N ]) > f ∗t−1|yt,nt) ≤
K2 + cd0
K1

∀t ≥ 1 . (A.15)

Proof. Recall that when running the Bayesian optimal stopping algorithm in

iteration t of BO-BOS, we only early-stop the experiment (nt < N ) when we can

safely conclude that the performance of the currently evaluated hyperparameter

xt will end up having smaller (or equal) validation accuracy than the currently

observed optimum offset by a noise correction term: y∗t−1 − ξt; i.e., when the

expected loss of decision d1 is the smallest among all decisions. Therefore, when
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the evaluation of xt is early-stopped after nt < N epochs, we can conclude that

K1P(f([xt, N ]) > y∗t−1 − ξt|yt,nt)

≤ Eyt,nt+1|yt,nt

[
min{K1P(f([xt, N ]) > y∗t−1 − ξt|yt,nt+1),

K2P(f([xt, N ]) ≤ y∗t−1 − ξt|yt,nt+1),Eyt,nt+2|yt,nt+1 [ρt,nt+2(yt,nt+2)] + cd0}
]

+ cd0

≤ Eyt,nt+1|yt,nt [K2P(f([xt, N ]) ≤ y∗t−1 − ξt|yt,nt+1)] + cd0

≤ K2Eyt,nt+1|yt,nt [P(f([xt, N ]) ≤ y∗t−1 − ξt|yt,nt+1)] + cd0

≤ K2 + cd0

(A.16)

Equation A.16, together with Lemma A.7, implies that

P(f([xt, N ]) > f ∗t−1|yt,nt) ≤P(f([xt, N ]) > y∗t−1 − ξt|yt,nt)

≤K2 + cd0
K1

(A.17)

which holds uniformly for all t ≥ 1 with probability ≥ 1− δ′′.

Subsequently, we use the next Lemma to upper-bound E[R2
T ] by the BOS cost

parameters. We set K2 and cd0 as constants, and use different values of K1 in

different iterations t of the BO-BOS algorithm, which is represented by K1,t.

Lemma A.9. In iteration t of the BO-BOS algorithm, define K2+cd0
K1,t

, ηt. Then,

with probability ≥ 1− δ′′,

E[RT,2] ≤
T∑
t=1

ηt ∀T ≥ 1 .

Proof. Recall that according to Assumption 4.1, the value of the objective

function f is bounded in the range [0, 1]. In iteration t, assume we early-stop the
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evaluation of xt after nt < N epochs, then

E[f([xt, N ])− f ∗t−1|yt,nt ]
(1)

≤ E[1f([xt,N ])−f∗t−1>0|yt,nt ]

= P(f([xt, N ]) > f ∗t−1|yt,nt)
(A.18)

Step (1) in Equation A.18 is because x ≤ 1x>0 ∀x ∈ [−1, 1] and substituting

x = f([xt, N ])− f ∗t−1. As a result, with probability ≥ 1− δ′′

E[RT,2]
(1)
=

∑
{t|nt<N}

E[rt,2]
(2)
=

∑
{t|nt<N}

E[f([xt, N ])− f ∗t−1|yt,nt ]

(3)

≤
∑

{t|nt<N}

P(f([xt, N ]) > f ∗t−1|yt,nt)
(4)

≤
∑

{t|nt<N}

ηt ≤
T∑
t=1

ηt

(A.19)

in which (1) follows from the linearity of expectation, (2) holds because the

Expectation of rt,2 is taken over P(f([xt, N ]) > y∗t−1 − ξt|yt,nt), (3) results from

Equation A.18, and (4) follows from Lemma A.8. This completes the proof.

A.3.4 Putting Things Together

In this section, we put everything from the previous two sections together to prove

the main theorems.

A.3.4.1 Proof of Theorem 4.1

Theorem 4.1 can be proven by combining Lemmas A.6 and A.9, and making use

of the fact that ST ≤ RT
T
.

A.3.4.2 Proof of Theorem 4.2

Below we analyze the asymptotic behavior of each of the three terms in the upper

bound of E[ST ] in Theorem 4.1, which is re-presented here for ease of reference.

E[ST ] ≤ κ
√
TC1βTγT
T

+

∑T
t=1 ηt
T

+
1

T
Nb

√
log

da

δ′
τT . (A.20)
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A.3.4.2.1 The first term in the upper bound of E[ST ] Firstly, the first term

in the upper bound matches the upper bound on the simple regret of the GP-UCB

algorithm (Srinivas et al., 2010) (up to the constant κ). The maximum information

gain, γT , has been analyzed for a few of the commonly used kernels in GP (Srinivas

et al., 2010). For example, for the SquareExponential kernel, γT = O((log T )d+1),

whereas for the Matérn kernel with ν > 1, γT = O(T d(d+1)/(2ν+d(d+1)) log T ).

Plugging both expressions of γT into Theorem 4.1, together with the expression

of βT as given in Theorem 4.1, shows that both kernels lead to sub-linear growth

of the term
√
TC1βTγT , which implies that the first term in the upper bound of

E[ST ] asymptotically goes to 0.

A.3.4.2.2 The second term in the upper bound of E[ST ] Given thatK1,t is

an increasing sequence withK1,1 ≥ K2 + cd0 , the series
∑T

t=1 ηt =
∑T

t=1

K2+cd0
K1,t

grows sub-linearly, thus making the second term in the upper bound of E[ST ]

given in Theorem 4.1,
∑T
t=1 ηt
T

, asymptotically go to 0.

A.3.4.2.3 The third term in the upper bound of E[ST ] Next, suppose that

K1,t becomes +∞ for the first time at iteration T0. SinceK1,t is a non-decreasing

sequence, K1,t = +∞ for all t ≥ T0. Therefore, for t ≥ T0, decision d1 will

never be taken and the algorithm will never early-stop. In other words, nt = N

for all t ≥ T0.

Therefore, we can conclude that τT ≤ T0 for all T ≥ 1. As a result, the last

term in the upper bound on E[ST ] in Theorem 4.1 can be upper-bounded by

τT
T
Nb

√
log

da

δ′
≤
T0Nb

√
log da

δ′

T
= O

(
1

T

)
(A.21)

which asymptotically goes to 0 as T goes to +∞, because the numerator term is

a constant. Therefore, this term also asymptotically vanishes in the upper bound.

To summarize, if the BOS parameters are selected according to Theorem 4.2,
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we have that

E[ST ] = O

(√
TβTγT
T

+

∑T
t=1 ηt
T

+
1

T

)
(A.22)

and E[ST ] goes to zero asymptotically.

A.4 Additional Experimental Details

In each experiment, the same initializations (6 initial points if not further specified)

are used for all BO-based methods: GP-UCB, BOCA, LC Prediction, and BO-

BOS. The Square Exponential kernel is used for BOCA since the algorithm

is only given for this kernel (Kandasamy et al., 2017), the other BO-based

algorithms use the Matérn kernel; the kernel hyperparameters are updated by

maximizing the Gaussian process marginal likelihood after every 10 BO iterations.

In the BO-BOS algorithm, since the number of training epochs is an input to

the GP surrogate function, some of the intermediate observations (n < N ) can

be used as additional input to GP to improve the modeling of the objective

function. However, using the observation after every epoch as input leads to

poor scalability. Therefore, for all experiments with N = 50 (which include

most of the experiments), we use the observations after first, 10-th, 20-th, 30-th

and 40-th epochs as additional inputs to the GP surrogate function; whereas

for the RL experiment with N = 100 in section 4.5.3.1, we use the 1-th, 20-th,

40-th, 60-th and 80-th intermediate observations as additional inputs. 100,000

forward simulation samples are used for each BOS algorithm; the grid size of the

discretized summary statistics is set to 100; for simplicity, the incumbent value at

iteration t is chosen as y∗t−1 = maxt′=1,...,t−1 yt′ , thus ignoring the observation

noise. In the LC Prediction algorithm (Domhan et al., 2015), learning curve

prediction is performed after every 2 epochs. In Hyperband (Li et al., 2017),

the successive halving parameter η is set to 3 as recommended by the original

authors, and the maximum number of epochs is set to N = 80 (we observed
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that setting N = 80 led to better performance than N = 50 since it allows the

Hyperband algorithm to run for more epochs overall).

A.4.1 Hyperparameter Tuning for Logistic Regression

In the first set of experiments, we perform hyperparameter tuning for a simple

ML model, logistic regression (LR). The LR model is trained using the MNIST

image dataset, which consists of 70,000 images of the 10 digits, corresponding to

a 10-class classification problem. Three hyperparameters are tuned: the batch

size (20 to 500), L2 regularization parameter (10−6 to 1.0), and learning rate

(10−3 to 0.1). We use 80% of the images as the training set and the remaining

20% as the validation set.

Some of the learning curves during a particular run of the BO-BOS algorithm

is shown in Fig. A.3. It can be observed that the learning curves that show

minimal potential in achieving small validation errors are early-stopped, whereas

the promising hyperparameter settings are run for larger number of epochs.

The reliability of the early stopping achieved by the BO-BOS algorithm is

demonstrated in Fig. A.4. In this figure, the green triangles correspond to the

learning curves that are not early-stopped (nt = N ), and the red circles represent

the final validation errors (after training for the maximum number of epochs N )

that could have been reached by the early-stopped learning curves (nt < N ).

Note that the red circles are shown only for the purpose of illustration and are not

observed in practice. As displayed in the figure, the early stopping decisions made

during the BO-BOS algorithm are reliable, since those early-stopped learning

curves all end up having large validation errors.
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Figure A.3: Some learning curves during the BO-BOS algorithm.
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Figure A.4: Illustration of the effectiveness of the early stopping decisions made
during the BO-BOS algorithm.

A.4.2 Hyperparameter Tuning for Convolutional Neural Net-

works

Next, we tune the hyperparameters of convolutional neural networks (CNN) using

the CIFAR-10 (Krizhevsky, 2009) and Street View House Numbers (SVHN)

dataset (Netzer et al., 2011). Both tasks correspond to 10-class classification

problems. For CIFAR-10, 50, 000 images are used as the training set and 10,000

images are used as the validation set; for SVHN, 73,257 and 26032 images are

used as the training and validation sets respectively following the original dataset

partition. The CNN model consists of three convolutional layers (each followed

by a max-pooling layer) followed by one fully-connected layer. We tune six
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hyperparameters in both experiments: the batch size (32 to 512), learning rate

(10−7 to 0.1), learning rate decay (10−7 to 10−3), L2 regularization parameter

(10−7 to 10−3), the number of convolutional filters in each layer (128 to 256), and

the number of units in the fully-connected layer (256 to 512).

A.4.3 Policy Search for Reinforcement Learning

Weapply our algorithm to a continuous control task: the Swimmer-v2 environment

from OpenAI Gym, MuJoCo (Brockman et al., 2016; Todorov et al., 2012). The

task involves controlling two joints of a swimming robot to make it swim forward

as fast as possible. The state of the robot is represented by an 8-dimensional

feature vector, and the action space is 2-dimensional corresponding to the two

joints. We use a linear policy, in which the policy is represented by an 8 × 2

matrix that maps each state vector to the corresponding action vector. In this

setting, the input parameters, x, to the GP-UCB and BO-BOS algorithms are the

16 parameters of the policy matrix, and the objective function is the discounted

cumulative rewards in an episode. Each episode of the task consists of 1,000

steps. We set N (the maximum number of epochs) to be smaller than 1, 000

by treating a fixed number of consecutive steps as one single epoch. E.g., we

can set N = 50 or N = 100 by treating every 20 or 10 consecutive steps as one

epoch respectively. The rewards are clipped, scaled, and normalized such that the

discounted cumulative rewards of each episode is bounded in the range [0, 1]; for

each evaluated policy, we also record the un-discounted and un-scaled cumulative

rewards, which are the ultimate objective to be maximized and reported in Fig.

4.3a in the main text. Each policy evaluation consists of running 5 independent

episodes with the given policy, and returning the average discounted cumulative

rewards, i.e., average return, as the observed function value.

As mentioned in the main text, the rewards are discounted in order to make

the objective function, the discounted cumulative rewards, resemble the learning
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curves of ML models, such that the BO-BOS algorithm can be naturally applied.

This rationale is illustrated in Fig. A.5, which plots some example un-discounted

(γ = 1.0) and discounted (γ = 0.9) cumulative rewards respectively. The figures

indicate that, compared with un-discounted cumulative rewards, discounted

cumulative rewards bear significantly closer resemblance to the learning curves

of ML models, thus supporting the claim made in the main text motivating the

use of discounted rewards, as well as the experimental results shown in Fig. 4.3a

(specifically, the poor performance of the curve corresponding to N = 50 and

γ = 1.0). In addition to the results presented in the main text in section 4.5.3.1,

we further present the results with standard errors in Fig. A.6, to emphasize the

significant performance advantage offered by BO-BOS compared with GP-UCB.

To avoid clutter, we only present the results with error bar for GP-UCB with

γ = 1.0 and BO-BOS with N = 50 and γ = 0.9, which are best-performing

settings for GP-UCB and BO-BOS respectively.

A.4.4 Joint Hyperparameter Tuning and Feature Selection

In this set of experiments, we use the gradient boosting model (XGBoost (Chen

and Guestrin, 2016)), tuning four hyperparameters: the learning rate (10−3 to

0.5), maximum depth of each decision tree (2 to 15), feature sub-sampling ratio

for each tree (0.3 to 1.0), and L1 regularization parameter (0.0 to 5.0). We use

the email spam dataset from the UCI Machine Learning Repository (Dheeru

and Karra Taniskidou, 2017), which represents a binary classification problem:

whether the email is a spam or not. We use 3065 emails as the training set

and the remaining 1536 emails as the validation set; each email consists of 57

features. The maximum number of features for each hyperparameter setting is

set as N = 50.
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(a) Un-discounted (γ = 1.0).
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(b) Discounted (γ = 0.9).

Figure A.5: Example curves of un-discounted and discounted cumulative rewards
in RL.
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Figure A.6: Best-found return (averaged over 5 episodes) v.s. the total number of
steps of the robot in the environment (averaged over 30 random initializations)
using the Swimmer-v2 task, with standard error.
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Appendix B

Appendix for Chapter 5

B.1 Construction of Random Fourier Features

As mentioned in Section 5.2, in this work, we focus on the widely used Squared

Exponential (SE) kernel: k(x,x′) = σ2
0 exp(−‖x− x′‖2

2 /(2l
2)) in which l is

the length scale and σ2
0 is the signal variance. σ2

0 = 1 is usually the default value,

which we use in all experiments. We construct the random features following

the work of (Rahimi and Recht, 2007). Specifically, for the SE kernel with

length scale l, the spectral density follows a d-dimensional Gaussian distribution:

p(s) = N (0, 1
l2

Id×d). To begin with, we draw M independent samples of

{si}i=1,...,M from p(s) (every si is a d-dimensional vector), andM independent

samples of {bi}i=1,...,M from the uniform distribution over [0, 2π] (every bi is a

scalar). Next, for an input x, the correspondingM -dimensional random features

(basis functions) can be constructed as φ(x)> = [
√

2/M cos(s>i x + bi)]i=1,...,M .

Each set of random featuresφ(x) is then normalized such that
∥∥φ(x)

∥∥2

2
= σ2

0 . As

a result, sharing the random featuresφ(x),∀x ∈ X among all agents (Section 5.2)

can be achieved by simply sharing the parameters {si}i=1,...,M and {bi}i=1,...,M .

This is easily achievable since it is equivalent to sharing the parameters of the

first layer of a neural network model withM units in the hidden layer, in which
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{si}i=1,...,M are the weights (which form a d×M -dimensional weight matrix)

and {bi}i=1,...,M are the biases.

B.2 GP Posterior Prediction with RFF Approxima-

tion

Here we derive the expressions of the posterior predictive mean and variance of a

GP with random Fourier features (RFF) approximation (Section 5.2). Recall that

we have defined Φ(Xt) = [φ(x1), . . . ,φ(xt)]
> which is a t ×M -dimensional

matrix.

With theRFF approximation, the kernel function is approximated byk(x,x′) ≈

φ(x)>φ(x′). Define K̂t = [φ(xt′)
>φ(xt′′)]t′,t′′=1,...,t = Φ(Xt)Φ(Xt)

> and

k̂t(x) = [φ(x)>φ(xt′)]
>
t′=1,...,t = Φ(Xt)φ(x), which are analogous to Kt and

kt(x) in Equation (2.1)with the kernel values k(x,x′) replaced by the approximate

kernel values φ(x)>φ(x′). With these definitions, we have that

Φ(Xt)
>
[
K̂t + σ2I

]
= Φ(Xt)

>
[
Φ(Xt)Φ(Xt)

> + σ2I
]

= Φ(Xt)
>Φ(Xt)Φ(Xt)

> + σ2Φ(Xt)
>

=
[
Φ(Xt)

>Φ(Xt) + σ2I
]

Φ(Xt)
>

= ΣtΦ(Xt)
>.

(B.1)

Multiplying both sides by Σ−1
t from the left and (K̂t + σ2I)−1 from the right, we

get

Σ−1
t Φ(Xt)

> = Φ(Xt)
>(K̂t + σ2I)−1. (B.2)
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Then multiplying both sides by φ(x)> from the left and yt from the right, we get

µ̂t(x) = φ(x)>νt = φ(x)>Σ−1
t Φ(Xt)

>yt = φ(x)>Φ(Xt)
>(K̂t + σ2I)−1yt

= k̂t(x)>(K̂t + σ2I)−1yt,

(B.3)

which proves that the expression of the approximate posterior mean with RFF

approximation: µ̂t(x) = φ(x)>νt matches the expression of the posterior mean

of standard GP without RFF approximation, except that the kernel values k(x,x′)

are replaced by the approximate kernel values φ(x)>φ(x′).

Next, we derive the expression of the approximate posterior variance. Making

use of the matrix inversion lemma, we get

σ̂2
t (x) = σ2φ(x)>Σ−1

t φ(x) = σ2φ(x)>(Φ(Xt)
>Φ(Xt) + σ2I)−1φ(x)

= σ2φ(x)>

[
1

σ2
I− 1

σ2
Φ(Xt)

>
(

I + Φ(Xt)
1

σ2
Φ(Xt)

>
)−1

Φ(Xt)
1

σ2

]
φ(x)

= φ(x)>φ(x)− φ(x)>Φ(Xt)
>
(
σ2I + Φ(Xt)

>Φ(Xt)
)−1

Φ(Xt)φ(x)

= k̂(x,x)− k̂t(x)>
(
K̂t + σ2I

)−1

k̂t(x),

(B.4)

which gives the expression of the approximate posterior variance: σ̂2
t (x) =

σ2φ(x)>Σ−1
t φ(x). To conclude, Equations (B.3) and (B.4) prove that the expres-

sions of the posterior mean and variance of GP with RFF approximation given

in Section 5.2 (in the paragraph after Equation (5.2)) match the corresponding

expressions of standard GP posterior mean and variance without RFF approxima-

tion (2.1), except that the original kernel values (i.e., k(x,x′)) are replaced by

the corresponding approximate kernel values (i.e., φ(x)>φ(x′)).
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B.3 Proof of Theorem 5.1

As mentioned in Section 5.4, we analyze our FTS algorithm in the more general

setting in which a message can be received from each agent An before every

iteration t, instead of only before the first iteration. Therefore, throughout our

theoretical analysis, we use ωn,t, instead of ωn, to denote the message received

from agent An before iteration t. Similarly, we use ĝn,t, instead of ĝn, to denote

the corresponding sampled function from agent An with RFF approximation

in iteration t, obtained using ωn,t: ĝn,t(x) = φ(x)>ωn,t,∀x ∈ X . Note that

our theoretical analysis and results also hold in the most general setting where

every agent An may collect more observations between different rounds of

communication, in which the only difference is that every tn,∀n = 1, . . . , N may

increase over different iterations.

Define Ft as the filtration containing agent A’s history of selected inputs and

observed outputs up to iteration t. Let δ ∈ (0, 1), we have defined in Theorem 5.1

that βt = B + σ
√

2(γt−1 + 1 + log(4/δ) and ct = βt(1 +
√

2 log(|X |t2)) for

t ≥ 1. Clearly, both βt and ct are increasing in t. Denote by At the event that

agentA chooses xt by maximizing a sampled function from its own GP posterior

(i.e., xt = arg maxx∈X ft(x), as in line 4 of Algorithm 5.1), which happens with

probability pt; denote by Bt the event that A chooses xt by maximizing the

sampled function from any other agent A1, . . . ,AN (line 6 of Algorithm 5.1),

which happens with probability (1− pt); denote by Bt,n the event thatA chooses

xt by maximizing the sampled function of agent An using RFF approximation

(i.e., xt = arg maxx∈X ĝn,t(x)), which happens with probability (1−pt)×PN [n].

To begin with, we define two high-probability events through the following

lemmas.

Lemma B.1. Let δ ∈ (0, 1). Define Ef (t) as the event that |µt−1(x)− f(x)| ≤

βtσt−1(x) for all x ∈ X . We have that P
[
Ef (t)

]
≥ 1− δ/4 for all t ≥ 1.
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Lemma C.1 quantifies the concentration of the function f around its posterior

mean and its proof follows directly from Theorem 2 of the work of (Chowdhury

and Gopalan, 2017) by using an error probability of δ/4.

LemmaB.2. DefineEft(t) as the event that |ft(x)−µt−1(x)| ≤ βt
√

2 log(|X |t2)σt−1(x).

We have that P
[
Eft(t)|Ft−1

]
≥ 1− 1/t2 for any possible filtration Ft−1.

Lemma C.2 illustrates how concentrated a sampled function ft from f is

around its posterior mean and is a simpler version of Lemma 5 of the work

of (Chowdhury and Gopalan, 2017). Specifically, we have assumed a discrete

domain, whereas the work of (Chowdhury and Gopalan, 2017) deals with a

compact domain. Note that both events Ef (t) and Eft(t) are Ft−1-measurable.

Next, we define a set of inputs at every iteration t called saturated points,

which represents the set of “bad” inputs at iteration t. These inputs are “bad” in

the sense that the function values at these inputs have relatively large difference

from the value of the global maximum of f . In the subsequent proof, we will

lower-bound the probability that the selected input xt is unsaturated, which will

be a critical step in the proof.

Definition B.1. Define the set of saturated points at iteration t as

St = {x ∈ X : ∆(x) > ctσt−1(x)}

in which ∆(x) = f(x∗)− f(x) and x∗ = arg maxx∈X f(x).

Note that from this definition, x∗ is always unsaturated since ∆(x) =

f(x∗) − f(x∗) = 0 < ctσt−1(x∗) for all t ≥ 1. Also note that St is Ft−1-

measurable.

The next lemma bounds the deviation of the sampled function ĝn,t(x) from

the GP posterior of agent An with RFF approximation around its posterior mean

µ̂n,t(x), whose proof is based on that of Lemma 11 of (Mutny and Krause, 2018).
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Lemma B.3. Given δ ∈ (0, 1). We have that for all agents An,∀n = 1, . . . , N

and for all x ∈ X and all t ≥ 1, with probability of at least 1− δ/4

|µ̂n,t(x)− ĝn,t(x)| ≤
√

2 log
2π2t2N

3δ
+M.

Proof. Recall from Section 5.2 that the sampled function ĝn,t is obtained by firstly

sampling ωn,t ∼ N (νn,t, σ
2Σ−1

n,t), and then setting ĝn,t(x) = φ(x)>ωn,t,∀x ∈

X . Moreover, we have shown in Section 5.2 that µ̂n,t(x) = φ(x)>νn,t. Denote

ωn,t = νn,t+σΣ
−1/2
n,t z, in which z ∼ N (0, I) is theM×1-dimensional standard

Gaussian distribution. We have that

|µ̂n,t(x)− ĝn,t(x)|2 = |φ(x)>νn,t − φ(x)>(νn,t + σΣ
−1/2
n,t z)|2

= |σφ(x)>Σ
−1/2
n,t z|2

≤ σ2
∥∥∥φ(x)>Σ

−1/2
n,t

∥∥∥2

2
‖z‖2

2

= σ2φ(x)>Σ−1
n,tφ(x)‖z‖2

2

= σ̂2
n,t(x)‖z‖2

2 ≤‖z‖
2
2 ,

(B.5)

in which we have made use of the assumption w.l.o.g. that the posterior variance

is upper-bounded by 1 in the last inequality. Next, making use of the concentration

of chi-squared distribution: P(‖z‖2
2 ≥M + 2λ) ≤ exp(−λ) (Mutny and Krause,

2018), we have that with probability of at least 1− 3δ
2π2t2N

,

‖z‖2
2 ≤M + 2 log

2π2t2N

3δ
. (B.6)

Taking a union bound over all agents A1, . . . ,AN and all t ≥ 1 completes the

proof.

The following lemma uniformly upper-bounds the difference between agent

An’s objective function gn and sampled function ĝn,t from its GP posterior with

RFF approximation.
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Lemma B.4. Given any δ ∈ (0, 1). Conditioned on the event Ef (t), for agent

An’s sampled function ĝn,t from its posterior GP with RFF approximation, we

have that for all agentsAn,∀n = 1, . . . , N and for all x ∈ X and all t ≥ 1, with

probability of at least 1− δ/2,

|ĝn,t(x)− gn(x)| ≤ ∆̃n,t,

where β′t = B + σ
√

2(γt−1 + 1 + log(8N/δ), and

∆̃n,t , ε
(tn + 1)2

σ2

B +

√
2 log

(
4π2t2N

3δ

)+β′tn+1+

√
2 log

2π2t2N

3δ
+M.

Proof. Recall that ε is the accuracy of the RFF approximation, tn is the number of

iterations agent An has completed in its own BO task when it passes information

to A, M is the number of random features used in the RFF approximation.

Denote by µ̂n,t(x) and µn,t(x) (σ̂n,t(x) and σn,t(x)) the posterior mean (standard

deviation) at x of agent An’s GP after running its own BO task for tn iterations

with and without the RFF approximation respectively.

We have that for all x ∈ X , all agents An,∀n = 1, . . . , N and all t ≥ 1, with

probability of at least 1− δ
8
,

|µn,t(x)− µ̂n,t(x)| ≤ ε
(tn + 1)2

σ2

B +

√
2 log

(
4π2t2N

3δ

) , (B.7)

which can be proved by following the proof of Theorem 5 in the work of (Mutny

and Krause, 2018) by substituting the error probability of 3δ
4π2t2N

and taking a

union bound over all agents and all t ≥ 1. Next, making use of Lemma C.1

(replacing f by gn, and δ/4 by δ/(8N)), we get

|µn,t(x)− gn(x)| ≤ β′tn+1σn,t(x) ≤ β′tn+1, (B.8)
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which holds for all x ∈ X , agents An and tn ≥ 1, with probability of at least

1 − δ/8. The last inequality follows from our assumption w.l.o.g. that the

posterior variance is upper-bounded by 1.

Combining the two equations above and making use of Lemma B.3 completes

the proof.

The next lemma shows a uniform upper bound on the difference between the

sampled function ft of agent A and that of agent An with RFF approximation

(ĝn,t).

Lemma B.5. At iteration t, conditioned on the events Ef (t) and Eft(t), we

have that for all agents An, ∀n = 1, . . . , N and for all x ∈ X with probability

≥ 1− δ/2

|ĝn,t(x)− ft(x)| ≤ ∆n,t,

in which

∆n,t , ε
(tn + 1)2

σ2

B +

√
2 log

(
4π2t2N

3δ

)+ β′tn+1+

√
2 log

2π2t2N

3δ
+M + dn + ct.

(B.9)

Proof. Firstly, note that since we condition on both events Ef (t) and Eft(t), we

have that for all x ∈ X and all t ≥ 1

|f(x)− ft(x)| ≤ |f(x)− µt−1(x)|+ |µt−1(x)− ft(x)|

= βtσt−1(x) + βt
√

2 log(|X |t2)σt−1(x) = ctσt−1(x)

(B.10)
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Next,

|ĝn,t(x)− ft(x)| ≤ |ĝn,t(x)− gn(x)|+ |gn(x)− f(x)|+ |f(x)− ft(x)|

≤ ∆̃n,t + dn + ctσt−1(x)

≤ ∆̃n,t + dn + ct,

(B.11)

in which we have made use of Lemma C.3, the definition of dn: dn =

maxx∈X |f(x) − gn(x)| (Section 5.2, last paragraph), Equation (C.2), and the

assumption that the posterior variance is upper-bounded by 1. Plugging in the

expression of ∆̃n,t from Lemma C.3 completes the proof.

Lemma B.6. For any filtration Ft−1, conditioned on the events Ef (t) and At,

we have that for every x ∈ X ,

P
(
ft(x) > f(x)|Ft−1, E

f (t), At

)
≥ p, (B.12)

in which p = 1
4e
√
π
.

As shown in the proof of Lemma 8 of (Chowdhury and Gopalan, 2017), the

proof of Lemma B.6 makes use of the fact that ft(x) ∼ N (µt−1(x), β2
t σ

2
t−1(x))

since we are conditioning on the event At, the confidence bound given in

Lemma C.1 which holds since we are conditioning on the event Ef (t), and the

Gaussian anti-concentration lemma. That is, for a Gaussian random variable

X ∼ N (µ, σ2), for any β > 0, we have that

P
(
X − µ
σ

> β

)
≥ exp(−β2)

4
√
πβ

.

The next lemma shows that in each iteration t, the probability that an

unsaturated input is selected can be lower-bounded.
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Lemma B.7. For any filtration Ft−1, conditioned on the event Ef (t), we have

that with probability ≥ 1− δ/2,

P
(
xt ∈ X \ St|Ft−1

)
≥ Pt,

in which

Pt , pt(p− 1/t2).

Proof. Note that all probabilities in this proof are conditioned on the event Ef (t)

and thus this conditioning is omitted for simplicity. At iteration t, the probability

that the selected input xt is unsaturated can be lower-bounded by:

P
(
xt ∈ X \ St|Ft−1

)
≥ P

(
xt ∈ X \ St|Ft−1, At

)
P(At)

= P
(
xt ∈ X \ St|Ft−1, At

)
pt

(B.13)

Next, we attempt to lower-bound P
(
xt ∈ X \ St|Ft−1, At

)
.

Firstly, recall that conditioned on the event At, xt is selected by maximizing

ft, which is sampled from the GP posterior of function f . This gives rise to:

P
(
xt ∈ X \ St|Ft−1, At

)
≥ P

(
ft(x

∗) > ft(x),∀x ∈ St|Ft−1, At
)
. (B.14)

This inequality can be obtained by observing that the event on the right hand side is

a subset of the event on the left hand side. Specifically, recall from Definition C.1

that x∗ is always unsaturated. Therefore, if ft(x∗) > ft(x),∀x ∈ St, as a result

of the way in which xt is selected (i.e., xt = arg maxx∈X ft(x)), this guarantees

that an unsaturated input will be selected as xt since at least one unsaturated

input (x∗) has a larger value of ft than all saturated inputs.

Next, we assume that both events Ef (t) and Eft(t) are true, which allows us
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to derive an upper bound on ft(x) for all x ∈ St:

ft(x)
(a)

≤ f(x) + ctσt−1(x)
(b)

≤ f(x) + ∆(x) = f(x) + f(x∗)− f(x) = f(x∗),

(B.15)

in which (a) follows from (C.2) since here we also assume both events Ef (t) and

Eft(t) are true, and (b) results from the definition of saturated set (Definition C.1).

Therefore, (B.15) implies that

P
(
ft(x

∗) > ft(x),∀x ∈ St|Ft−1, At, E
ft(t)

)
≥ P

(
ft(x

∗) > f(x∗)|Ft−1, At, E
ft(t)

)
.

(B.16)

Next, we can show that

P
(
xt ∈ X \ St|Ft−1, At

)
≥ P

(
ft(x

∗) > ft(x),∀x ∈ St|Ft−1, At
)

(a)

≥ P
(
ft(x

∗) > f(x∗)|Ft−1, At
)
− P

(
Eft(x)|Ft−1

)
(b)

≥ p− 1/t2,

(B.17)

in which (a) follows from some simple probabilistic manipulations and the fact

that the eventEft(t) is Ft−1-measurable and thus independent of the eventAt, (b)

results from Lemma B.6 and the fact that the event Eft(t) holds with probability

of at least 1− 1/t2. Combining this inequality with (C.7) completes the proof.

The next lemma presents an upper bound on the expected instantaneous regret

of the FTS algorithm.

Lemma B.8. For any filtration Ft−1, conditioned on the event Ef (t), we have
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that with probability of ≥ 1− δ/2

E[rt|Ft−1] ≤ ct

(
1 +

10

pp1

)
E
[
σt−1(xt)|Ft−1

]
+ ψt +

2B

t2
,

in which rt is the instantaneous regret: rt = f(x∗) − f(xt), and ψt , 2(1 −

pt)
∑N

n=1 PN [n]∆n,t.

Proof. To begin with, we define xt as the unsaturated input at iteration t with the

smallest posterior standard deviation:

xt = arg minx∈X\Stσt−1(x). (B.18)

Following this definition, for any Ft−1 such that Ef (t) is true, we have that

E
[
σt−1(xt)|Ft−1

]
≥ E

[
σt−1(xt)|Ft−1,xt ∈ X \ St

]
P
(
xt ∈ X \ St|Ft−1

)
≥ σt−1(xt)Pt,

(B.19)

in which the last inequality follows from the definition of xt and Lemma C.5.

Now we condition on both events Ef (t) and Eft(t), and analyze the instanta-

neous regret as:

rt = ∆t(xt) = f(x∗)− f(xt) + f(xt)− f(xt)

(a)

≤ ∆t(xt) + ft(xt) + ctσt−1(xt)− ft(xt) + ctσt−1(xt)

(b)

≤ ctσt−1(xt) + ctσt−1(xt) + ctσt−1(xt) + ft(xt)− ft(xt)

= ct(2σt−1(xt) + σt−1(xt)) + ft(xt)− ft(xt),

(B.20)

in which (a) follows from the definition of ∆t(x) and |ft(x)−f(x)| ≤ ctσt−1(x)

for all x ∈ X since we assume both events Ef (t) and Eft(t) are true, and (b)
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results from the fact that xt is unsaturated. Next, we analyze the expected value

of the underlined term given a filtration Ft−1:

E
[
ft(xt)− ft(xt)|Ft−1

]
= P (At)E

[
ft(xt)− ft(xt)|Ft−1, At

]
+

P (Bt)
N∑
n=1

PN [n]E
[
ft(xt)− ft(xt)|Ft−1, Bt,n

]
(a)

≤ (1− pt)
N∑
n=1

PN [n]E
[
ft(xt)− ft(xt)|Ft−1, Bt,n

]
(b)

≤ (1− pt)
N∑
n=1

PN [n]E
[
ĝn,t(xt) + ∆n,t − ĝn,t(xt) + ∆n,t|Ft−1, Bt,n

]
(c)

≤ 2(1− pt)
N∑
n=1

PN [n]∆n,t , ψt,

(B.21)

in which (a) follows since when At is true, i.e., when xt = arg maxx∈X ft(x),

ft(xt) − ft(xt) ≤ 0, (b) makes use of Lemma C.4 (note that here we are also

conditioning on the events Ef (t) and Eft(t) which is the same as Lemma C.4,

and that Lemma C.4 holds irrespective of the event Bt,n since both Ef
t and

Eft(t) are Ft−1-measurable) and thus holds with probability of ≥ 1− δ/2, and

(c) follows since conditioned on the event Bt,n (i.e., xt = arg maxx∈X ĝn,t(x)),

ĝn,t(xt)− ĝn,t(xt) ≤ 0.

Subsequently, we can analyze the expected instantaneous regret by separately

considering the two cases in which the event Eft(t) is true and false respectively:
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E
[
rt|Ft−1

]
≤ E

[
ct(2σt−1(xt) + σt−1(xt)) + ft(xt)− ft(xt)|Ft−1

]
+ 2BP

[
Eft(t)|Ft−1

]
≤ E

[
ct(2σt−1(xt) + σt−1(xt))|Ft−1

]
+ E

[
ft(xt)− ft(xt)|Ft−1

]
+ 2BP

[
Eft(t)|Ft−1

]
≤ 2ct

Pt
E
[
σt−1(xt)|Ft−1

]
+ ctE

[
σt−1(xt)|Ft−1

]
+ ψt +

2B

t2

≤ ct

(
1 +

2

Pt

)
E
[
σt−1(xt)|Ft−1

]
+ ψt +

2B

t2
.

(B.22)

Note that since 1/(p− 1/t2) ≤ 5/p and pt ≥ p1 for all t ≥ 1,

2

Pt
=

2

pt(p− 1
t2

)
≤ 10

ppt
≤ 10

pp1

. (B.23)

Therefore, (C.19) can be further analyzed as

E
[
rt|Ft−1

]
≤ ct

(
1 +

10

pp1

)
E
[
σt−1(xt)|Ft−1

]
+ ψt +

2B

t2
, (B.24)

which completes the proof.

Subsequently, wemake use of the concentration inequality of super-martingales

to derive a bound on the cumulative regret.

Definition B.2. Define Y0 = 0, and for all t = 1, . . . , T ,

rt = rtI{Ef (t)},

Xt = rt − ct
(

1 +
10

pp1

)
σt−1(xt)− ψt −

2B

t2
,

Yt =
t∑

s=1

Xs.
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Lemma B.9. Conditioned on Lemma C.6 (i.e., with probability of ≥ 1− δ/2),

(Yt : t = 0, . . . , T ) is a super-martingale with respect to the filtration Ft.

Proof.

E[Yt − Yt−1|Ft−1] = E
[
Xt|Ft−1

]
= E

[
rt − ct

(
1 +

10

pp1

)
σt−1(xt)− ψt −

2B

t2
|Ft−1

]

= E
[
rt|Ft−1

]
−

[
ct

(
1 +

10

pp1

)
E
[
σt−1(xt)|Ft−1

]
+ ψt +

2B

t2

]

≤ 0,

(B.25)

in which the last inequality follows from Lemma C.6 when the event Ef (t) is

true; when Ef (t) is false, rt = 0 and thus the inequality holds trivially.

The Azuma-Hoeffding Inequality presented below will be useful for proving

the concentration of the super-martingale (Yt : t = 0, . . . , T ).

Lemma B.10 (Azuma-Hoeffding Inequality). Given any δ′ ∈ (0, 1). If a super-

martingale (ZT : t = 1, . . . , T ), defined with respect to the filtration Ft, satisfies

|Zt − Zt−1| ≤ αt for some constant αt, then for all t = 1, . . . , T and with

probability of at least 1− δ′,

ZT − Z0 ≤

√√√√2 log(1/δ′)
T∑
t=1

α2
t .

Finally, we can derive an upper bound on the cumulative regret through the

following lemma.

Lemma B.11. Given δ ∈ (0, 1), then with probability of at least 1− δ,

RT ≤cT
(

1 +
10

pp1

)
O(
√
TγT ) +

T∑
t=1

ψt +
Bπ2

3
+[

cT

(
1 +

4B

p
+

10

pp1

)
+ ψ1 +O(

√
log T )

]√
2T log

4

δ
,
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in which γT is the maximum information gain about f obtained from any set of T

observations.

Proof.

|Yt − Yt−1| = |Xt| ≤ |rt|+ ct

(
1 +

10

pp1

)
σt−1(xt) + ψt +

2B

t2

(a)

≤ 2B + ct

(
1 +

10

pp1

)
+ ψt +

2B

t2

(b)

≤ 2Bct
p

+ ct

(
1 +

10

pp1

)
+ ψt +

2Bct
p

≤ ct

(
1 +

4B

p
+

10

pp1

)
+ ψt,

(B.26)

in which (a) follows since the posterior variance is upper-bounded by 1, (b)

follows since 2B ≤ 2Bct/p and 2B/t2 ≤ 2Bct/p.

This allows us to apply the Azuma-Hoeffding Inequality (Lemma B.10) by

using an error probability of δ/4,

T∑
t=1

rt ≤
T∑
t=1

ct

(
1 +

10

pp1

)
σt−1(xt) +

T∑
t=1

ψt +
T∑
t=1

2B

t2
+√√√√2 log

4

δ

T∑
t=1

[
ct

(
1 +

4B

p
+

10

pp1

)
+ ψt

]2

≤ cT

(
1 +

10

pp1

) T∑
t=1

σt−1(xt) +
T∑
t=1

ψt +
Bπ2

3
+[

cT

(
1 +

4B

p
+

10

pp1

)
+ ψ1 +O(

√
log T )

]√
2T log

4

δ

= cT

(
1 +

10

pp1

)
O(
√
TγT ) +

T∑
t=1

ψt +
Bπ2

3
+[

cT

(
1 +

4B

p
+

10

pp1

)
+ ψ1 +O(

√
log T )

]√
2T log

4

δ
,

(B.27)

which holds with probability ≥ 1 − δ/4. The last inequality follows since

ct is increasing in t,
∑T

t=1 1/t2 = π2/6, and ψt ≤ ψ1 + O(
√

log t),∀t ≥ 1

which is ensured by the way in which we choose the sequence pt, i.e., such
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that (1 − pt)ct ≤ (1 − p1)c1 for all t ≥ 2. Lastly, note that the event Ef (t)

holds with probability ≥ 1 − δ/4, i.e., rt = rt with probability ≥ 1 − δ/4.

In the last equality, we made use of the fact that
∑T

t=1 σt−1(xt) =
√
C1TγT

(C1 , 8/(1 + σ−2)) which is proved by Lemmas 5.3 and 5.4 of (Srinivas et al.,

2010). Taking into account the error probability of Lemma C.6 (δ/2), which

is required for (Yt : t = 0, . . . , T ) to form a super-martingale, completes the

proof.

Finally, we are ready to prove Theorem 5.1. Recall that

ct = O
((

B +
√
γt + log(1/δ)

)√
log t

)
.

Therefore,

RT = O

(
1

p1

(
B +

√
γT + log

1

δ

)√
log T

√
TγT +

T∑
t=1

ψt+(
B +

1

p1

)(
B +

√
γT + log

1

δ

)√
log T

√
T log

1

δ

)

= O

(B +
1

p1

)√
T log TγT log

1

δ

(
γT + log

1

δ

)
+

T∑
t=1

ψt


= Õ

(B +
1

p1

)
γT
√
T +

T∑
t=1

ψt

 .

(B.28)

B.4 Further Experimental Details and Results

All experiments reported in this work are run on a computer with 48 cores of

Xeon Silver 4116 (2.1Ghz) processors, RAM of 256GB, and 1 NVIDIA Tesla T4

GPU. For fair comparisons, in all experiments, the same random initializations

are used by all methods.
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B.4.1 Optimization of Synthetic Functions

In the synthetic experiments, we sample the objective functions from a GP with

a length scale of 0.03. The functions are defined on a 1-dimensional discrete

domain uniformly distributed in [0, 1], with size |X | = 1, 000. The output values

of all functions f(x),∀x ∈ X are normalized into the range of [0, 1]. Whenever

an input x is queried, the corresponding noisy observation is obtained by adding

a zero-mean Gaussian noise N (0, σ2) where σ2 = 0.01 to the corresponding

function value f(x) (Section 5.2, first paragraph). For a sampled objective

function for the target agent, we generate the objective functions of the other

agents, as well as their observations, in the following way. For agent An, we go

through every input in the entire discrete domain, and for each input, we add

either dn or −dn to the corresponding output function value with probability

0.5 each, after which the resulting value is used as the objective function value

of the agent An. This step ensures the validity of the definition of dn as the

maximum difference between the objective function of the target agent A and

that of agent An: dn = maxx∈X |f(x) − gn(x)| (Section 5.2, last paragraph).

Next, we randomly sample tn inputs from the entire discrete domain, and for

each sampled input, we obtain a noisy output observation by adding a zero-mean

Gaussian noise: N (0, σ2) where σ2 = 0.01, to the corresponding function

value. Subsequently, following the procedures described in the first paragraph

of Section 5.3.1, every agent An applies RFF approximation using its own tn

observations (input-output pairs) to derive the RFF approximation parameters νn

and Σn and hence to draw a sample of ωn, which is the parameter to be passed to

and used by the target agent A. Finally, after receiving the parameters ωn’s from

all other agents, the target agent starts to run the FTS algorithm (Algorithm 5.1).
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Figure B.1: Performances in the most general setting in which tn is increasing
(green curve) for the (a) landmine detection, (b) Google glasses and (c) mobile
phone sensors experiments. The specific experimental setup is described in
Appendix B.4.2.1. The results correspond to Fig. 5.3 in the main paper.

B.4.2 Real-world Experiments

B.4.2.1 Results in the Most General Setting with Increasing tn

Here we perform additional experiments in the most general setting of our

FTS algorithm (Section 5.3.1, last paragraph): (a) information can be received

from every agent An before every iteration instead of only before the first

iteration, and (b) every An may also be performing black-box optimization tasks

(possibly also using FTS), such that An may collect more observations (i.e., tn

may increase) between different rounds of communication. We use the three

real-world experiments (Section 5.5.2) to investigate the performances in this

setting, and compare the performances with those in the simpler setting where

communication is allowed only before the first iteration.

Here we describe the detailed experimental setup for the experiments in

this section. Before the first iteration of the FTS algorithm, every agent An for

n = 1, . . . , N , who has completed tn = 50 iterations of its own BO task (we use

standard TS here for simplicity, but it can be replaced by FTS in which An is the

target agent), passes the first message to the target agent A. Next, before every

iteration t > 1 of the FTS algorithm (Algorithm 5.1), every agent An runs one

more iteration of its own BO task, calculates the updated RFF approximation

parameters νn,t and Σn,t (5.2), samples a new ωn,t from its posterior distribution:
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ωn,t ∼ N (νn,t, σ
2Σ−1

n,t), and finally passes the sampled ωn,t to the target agent

A. Then, A uses the received updated information to run iteration t of the FTS

algorithm. After this, the information from every agentAn is updated and sent to

A again, and the FTS algorithm proceeds to the next iteration t+ 1. As a result,

every tn,∀n = 1, . . . , N increases by 1 after every iteration of FTS.

The performances in all three experiments are shown in Fig. B.1, in which FTS

outperforms standard TS in both settings for all experiments. The figure also shows

that in the most general setting in which tn is increasing, the performances for the

two activity recognition experiments (Google glasses and mobile phone sensors

experiments) are improved, whereas the performances for the landmine detection

experiment are comparable in both settings. Note that the most general setting

with increasing tn may not necessarily lead to better performances: Although

using more observations from those agents with similar objective functions to the

target agent can give more useful information and hence potentially benefit the

FTS algorithm, more observations from heterogeneous agents may turn out to

hurt the performance of FTS since the information from these agents are actually

harmful for the BO task of the target agent.

B.4.2.2 More Experimental Details

In all real-world experiments, we use length scale = 0.01 to generate the

random features (Appendix B.1) and σ2 = 10−6 in the RFF approximation using

equations (5.1) and (5.2).

Landmine Detection. This dataset1 consists of the data from 29 landmine

fields, with each field associated with a dataset for landmine detection. The

dataset of each landmine field is made up of a number of input-output pairs,

each corresponding to a location; for every location, the input includes 9 features

extracted from radar images and the output is a binary label indicating whether

1http://www.ee.duke.edu/~lcarin/LandmineData.zip
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the location contains landmines. The number of data points (input-output pairs)

of every field ranges from 445 to 690, with a mean of 511; for every field, we use

50% of the data points as the training set, and the other 50% as the validation

set. We use support vector machines (SVM) as the predictive model, and tune

two SVM hyperparameters: RBF kernel parameter in the range of [0.01, 10],

and L2 regularization parameter in [10−4, 10]. For every queried hyperparamter

setting, the SVM model is trained on the training set using this particular set of

hyperparameters, and evaluated using the validation set to produce the reported

performances. (Figs. 5.2 and 5.3 in the main text). As mentioned in the main

text, the dataset of the landmine fields are significantly imbalanced, i.e., there

are considerably more locations without than with landmines. Specifically,

the percentage of positive samples (i.e., locations with landmines) in different

landmine fields ranges from 2.9% to 9.4%, with a mean of 6.2%. Therefore, for

this dataset, validation error is inappropriate since an all-zero prediction would

result in very low classification error. Hence, we use the Area Under the Receiver

Operating Characteristic Curve (AUC) which is a more appropriate metric when

evaluating the performance of ML models on imbalanced datasets.

Activity Recognition Using Google Glasses. This dataset2 consists of

two-hour long sensor data collected using Google glasses from 38 participants,

while the participants are performing different activities such as eating. For

every participant, we group the sensor data into different time windows; for each

time window, we calculate the statistics (i.e., mean, variance and kurtosis) of

different sensor measurements within this time window, and use them as the

features (57 features in total are extracted from each time window); the label

for each time window is a binary value indicating whether the participant is

eating or conducting other activities during this time window. As a result, for

every participant, each time window produces a data point, i.e., an input-output

2http://www.skleinberg.org/data/GLEAM.tar.gz
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pair. The number of data points for every participant ranges from 242 to 3416

with an average of 1930. For every participant, we randomly select 100 data

points as the validation set, and use the remaining data points as the training

set. We use logistic regression (LR) as the activity prediction model for every

participant, and tune 3 hyperparameters of LR: the batch size in the range of

[20, 60], the L2 regularization parameter in [10−6, 1], and the learning rate in

[0.01, 0.1]. Following the common practice for using LR and neural network

models, the inputs are pre-processed by removing the mean and dividing by the

standard deviation.

Activity Recognition Using Mobile Phone Sensors. This dataset3 contains

measurements from mobile phone sensors (accelerometer and gyroscope) involv-

ing 30 subjects. 561 features were provided together with the dataset, with each

set of features associated with a corresponding label indicating which one of

the six activities the subject is performing. Therefore, the activity recognition

problem for every subject corresponds to a 6-class classification problem. The

number of data points (input-output pairs) possessed by the subjects ranges from

281 to 409 with a mean of 343. For every subject, we use 50% of the data points

as the training set, and the remaining 50% as the validation set. We again use LR

as the activity recognition model, and the tuned hyperparameters, as well as their

ranges, are the same as those in the activity recognition experiment using Google

glasses.

B.4.2.3 Additional Results for More Agents

In this section, we present additional experimental results for the three real-world

experiments (Section 5.5.2). Note that as mentioned in Section 5.5.2 (last

paragraph), the results presented in Fig. 5.3 in the main text correspond to using

the first agent (of the 6 agents used to produce the results in Fig. 5.2 in the main

3https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+
Using+Smartphones
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Figure B.2: Additional results for the other 5 target agents for the landmine
detection experiment (M = 100).

text) as the target agent for every experiment. Meanwhile, the additional results

shown in this section (Figs. B.2, B.3 and B.4) correspond to using each of the

remaining 5 agents (agents 2 to 6) as the target agent. Note that since all three

real-world datasets contain heterogeneous agents (Section 5.5.2, first paragraph),

it is unreasonable to expect FTS to always outperform standard TS for all agents.

Instead, as shown in the figures, FTS performs better than TS for some agents,

and comparably with TS for other agents.
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Figure B.3: Additional results for the other 5 target agents for the activity
recognition experiment using Google glasses (M = 100).
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Figure B.4: Additional results for the other 5 target agents for the activity
recognition experiment using mobile phone sensors (M = 100).
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Appendix C

Appendix for Chapter 6

C.1 Proof of Theoretical Results

C.1.1 Proof of Proposition 6.1

Proposition 6.1 follows directly from the DP guarantee of the works of Abadi

et al. (2016) and McMahan et al. (2018b) (e.g., Theorem 1 of Abadi et al. (2016)).

Therefore, to prove the validity of Proposition 6.1, we only need to show that the

joint subsampled Gaussian mechanism we apply in every iteration (Section 6.3.3)

is the same as the one adopted by Abadi et al. (2016) and McMahan et al. (2018b).

Therefore, we demonstrate here that the interpretation of our privacy-preserving

transformations as a single subsampled Gaussian mechanism, which we have

described in Section 6.3.3, is equivalent to the transformations adopted by the

work of McMahan et al. (2018b).

Firstly, our subsampling step (step 6 of Algorithm 6.1) is the same as the one

adopted by McMahan et al. (2018b) since we both use the same subsampling

technique, i.e., select every agent with a fixed probability q. Secondly, we

both clip the (joint) vector from every selected agent (step 9 of Algorithm 6.1)

to ensure that its L2 norm is upper-bounded:
∥∥∥ω̂joint

n,t

∥∥∥
2
≤ NϕmaxS,∀n ∈ St.

Thirdly, we have adopted one of the two weighted-average estimators proposed
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by McMahan et al. (2018b), i.e., the unbiased estimator. Specifically, we

set the weight (we follow McMahan et al. (2018b) and denote the weight of

agent An by ωn here) of every agent to be ωn = 1, ∀n ∈ [N ]. As a result, the

unbiased estimator leads to: ωjoint
t = 1

q
∑N
n=1 ωn

∑
n∈St ωnω̂

joint
n,t = 1

qN

∑
n∈St ω̂

joint
n,t .

Lastly, we have calculated the sensitivity (which determines the variance of

the Gaussian noise) in the same way as McMahan et al. (2018b), i.e., using

Lemma 1 of McMahan et al. (2018b). In particular, note that our clipping

step has ensured that
∥∥∥ωnω̂joint

n,t

∥∥∥
2
≤ NϕmaxS,∀n ∈ St; according to Lemma 1

of McMahan et al. (2018b), we have that the sensitivity can be upper-bounded by:

S ≤ NϕmaxS

q
∑N
n=1 ωn

= ϕmaxS/q, which leads to the standard deviation of the Gaussian

noise we have added (step 11 of Algorithm 6.1): zS = zϕmaxS/q.

To conclude, the single joint subsampled Gaussian mechanism performed

by our DP-FTS-DE algorithm in every iteration is the same as the one adopted

by McMahan et al. (2018b). Therefore, the DP guarantee of McMahan et al.

(2018b) and Abadi et al. (2016) is also valid for our DP-FTS-DE algorithm, hence

justifying the validity of our Proposition 6.1.

C.1.2 Proof of Theorem 6.1

In this section, we prove Theorem 6.1, which gives an upper bound on the

cumulative regret of agent A1 running our DP-FTS-DE algorithm. The proof

of Theorem 6.1 makes use of the proof of the FTS algorithm (Chapter 5 and

Appendix B.3) (Dai et al., 2020b), and the main technical challenge is how to take

into account the impacts of (a) our modification to the original FTS algorithm by

incorporating a central server and an aggregation through weighted averaging

(first paragraph of Section 6.3.1), (b) the privacy-preserving transformations

(lines 5-11 of Algorithm 6.1), and (c) distributed exploration (DE) (Section 6.3.2).

Since we are mainly interested in the asymptotic regret upper bound, we ignore

the impact of the initialization period. Considering initialization would only add a
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constant term 2BNinit to the upper bound on the cumulative regret in Theorem 6.1

(Ninit is the number of initial inputs selected during initialization), and hence

would not affect the asymptotic no-regret property of our algorithm.

Note that as we have mentioned in Sections 6.2 and 6.4.2, we prove here an

upper bound on the cumulative regret of agent A1, i.e., R1
T ,

∑T
t=1(f 1(x1,∗)−

f 1(x1
t )). To simplify notations, we drop the superscript 1 in the subsequent

analysis, i.e., we use f to denote f 1, ft to denote f 1
t , xt to denote x1

t , x∗ to denote

x1,∗, etc. Similarly, we use µt−1 and σt−1 to represent the GP posterior mean and

standard deviation of A1 at iteration t.

C.1.2.1 Definitions and Supporting Lemmas

We firstly define some notations we use to represent the privacy-preserving

transformations, which are consistent with those in the main text. In iteration

t, we use ωn,t to denote the vector the central server receives from agent An.

For a given set of agents C ∈ {1, . . . , N}, define ϕ̃(i)
C ,

∑
n∈C ϕ

(i)
n , i.e., the

total weight of those agents in the set C for the sub-region Xi. Next, we

define N indicator (Bernoulli) random variables In,∀n = 1, . . . , N , where

P(In = 1) = q,∀n = 1, . . . , N . These indicator random variables will be used

to account for the subsampling step (i.e., step 6 of Algorithm 6.1). Denote by

ω̂n,t the resulting vector after ωn,t is clipped to have a maximum L2 norm of

S/
√
P (i.e., step 9 of Algorithm 6.1):

ω̂n,t ,
ωn,t

max(1,
‖ωn,t‖

2

S/
√
P

)
.
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An immediate consequence is that ∀x ∈ X :

|φ(x)>ω̂n,t| = |φ(x)>
ωn,t

max(1,
‖ωn,t‖

2

S/
√
P

)
|

= |φ(x)>ωn,t|
1

max(1,
‖ωn,t‖

2

S/
√
P

)
≤ |φ(x)>ωn,t|.

(C.1)

Denote by η the added Gaussian noise vector (i.e., step 11 of Algorithm 6.1):

η ∼ N
(
0, (zϕmaxS/q)

2I
)
. Next, define

ω
(i)
t ,

∑N
n=1 Inϕ

(i)
n ω̂n,t

q
+ η.

As a result, for agentA1 at iteration t > 1, with probability 1− pt, the query x1
t is

selected using the ω(i)
t ’s: x1

t = arg maxx∈X φ(x)>ω
(i[x])
t , where i[x] represents

the sub-region x is assigned to. This corresponds to line 7 of Algorithm 6.2.

Similar to the proof of the FTS algorithm (Appendix B.3), we let δ ∈ (0, 1),

and define βt , B+σ
√

2(γt−1 + 1 + log(4/δ) and ct , βt(1 +
√

2 log(|X |t2))

for all t ∈ Z+. Denote by At the event that agentA1 chooses x1
t by maximizing a

sampled function from its own GP posterior belief (i.e., x1
t = arg maxx∈X f

1
t (x),

as in line 5 of Algorithm 6.2), which happens with probability pt; denote by Bt

the event that A1 chooses x1
t using the information received from the central

server: x1
t = arg maxx∈X φ(x)>ω

(i[x])
t (line 7 of Algorithm 6.2), which happens

with probability (1− pt).

Next, we denote as Ft the filtration which includes the history of selected

inputs and observed outputs of agent A1 until (including) iteration t. Same as

the proof of FTS (Appendix B.3), we need to make use of the following two

Ft−1-measurable events, which we state here again for completeness:

Lemma C.1 (Lemma 1 of Dai et al. (2020b)). Let δ ∈ (0, 1). Define Ef (t)

as the event that |µt−1(x) − f(x)| ≤ βtσt−1(x) for all x ∈ X . We have that

P
[
Ef (t)

]
≥ 1− δ/4 for all t ≥ 1.
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Lemma C.2 (Lemma 2 of Dai et al. (2020b)). Define Eft(t) as the event that

|ft(x)− µt−1(x)| ≤ βt
√

2 log(|X |t2)σt−1(x). We have that P
[
Eft(t)|Ft−1

]
≥

1− 1/t2 for any possible filtration Ft−1.

Note that conditioned on both events Ef (t) and Eft(t), we have that for all

x ∈ X and all t ≥ 1:

|f(x)− ft(x)| ≤ |f(x)− µt−1(x)|+ |µt−1(x)− ft(x)|

= βtσt−1(x) + βt
√

2 log(|X |t2)σt−1(x) = ctσt−1(x).

(C.2)

Next, again following the proof in Appendix B.3, at every iteration t, we define

a set of saturated points, i.e., the set of “bad” inputs at iteration t. Intuitively,

these inputs are considered as “bad” because their corresponding function values

have relatively large differences from the value of the global maximum of f .

Definition C.1. At iteration t, define the set of saturated points as

St = {x ∈ X : ∆(x) > ctσt−1(x)}

in which ∆(x) , f(x∗)− f(x) and x∗ ∈ arg maxx∈X f(x).

Note that ∆(x∗) , f(x∗)− f(x∗) = 0 < ctσt−1(x∗) for all t ≥ 1. Therefore,

x∗ is always unsaturated for all t ≥ 1. St is Ft−1-measurable.

Consistentwith themain text inChapter 6, we define f̃nt (x) , φ(x)>ωn,t,∀x ∈

X , i.e., f̃nt is the sampled function from agent An’s GP posterior with RFF ap-

proximation at iteration t. Note that compared with Chapter 5 and Appendix B.3,

we have slightly modified the notations here for better clarity.

Lemma C.3 (Lemma 4 of Dai et al. (2020b)). Given any δ ∈ (0, 1). We have

that for all agents An,∀n = 1, . . . , N , all x ∈ X and all t ≥ 1, with probability

of at least 1− δ/2,

|f̃nt (x)− fn(x)| ≤ ∆̃n,t,

201



C.1. PROOF OF THEORETICAL RESULTS

where β′t = B + σ
√

2(γt−1 + 1 + log(8N/δ), and

∆̃n,t , ε
(t+ 1)2

σ2

B +

√
2 log

(
4π2t2N

3δ

)+ β′t+1 +

√
2 log

2π2t2N

3δ
+M.

Note that a difference between our Lemma C.3 above and Lemma 4 in the

work of Dai et al. (2020b) (i.e., Lemma B.4. in Appendix B.3) is that in their

proof, they assumed that the number of observations from agent An is a constant

tn; in contrast, we have made use of the fact that in the setting of our DP-FTS-DE

algorithm, the number of observations from the other agents are growing with t

because all agents are running DP-FTS-DE concurrently. Furthermore, we define

∆̃
(i)
t ,

N∑
n=1

ϕ(i)
n ∆̃n,t. (C.3)

The next lemma gives a uniform upper bound on the difference between the

sampled function ft from agent A1 and a weighted combination of the sampled

function from all agents, which holds throughout all sub-regions Xi, ∀i =

1, . . . , P .

Lemma C.4. Denote by ε an upper bound on the approximation error of RFF

approximation (Section 6.2): supx,x′∈X |k(x,x′)−φ(x)>φ(x′)| ≤ ε. At iteration

t, conditioned on the events Ef (t) and Eft(t), we have that for all x ∈ X and all

i ∈ [P ], with probability ≥ 1− δ/2,

|
N∑
n=1

ϕ(i)
n f̃

n
t (x)− ft(x)| ≤ ∆

(i)
t ,
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in which ∆
(i)
t ,

∑N
n=1 ϕ

(i)
n ∆n,t, and

∆n,t , ∆̃n,t + dn + ct

= ε
(t+ 1)2

σ2

B +

√
2 log

(
4π2t2N

3δ

)+ β′t+1

+

√
2 log

2π2t2N

3δ
+M + dn + ct

= Õ(M−1/2Bt2 +B +
√
M + dn +

√
γt).

(C.4)

Proof.

|
N∑
n=1

ϕ(i)
n f̃

n
t (x)− ft(x)| = |

N∑
n=1

ϕ(i)
n f̃

n
t (x)−

N∑
n=1

ϕ(i)
n ft(x)|

≤
N∑
n=1

ϕ(i)
n |f̃nt (x)− ft(x)| ≤

N∑
n=1

ϕ(i)
n ∆n,t,

(C.5)

where the last inequality results from Lemma 5 of Dai et al. (2020b) (i.e., Lemma

B.5. in Appendix B.3).

Note that Lemma C.4 above takes into account our modifications to the

original FTS algorithm (Dai et al., 2020b) (Chapter 5) by including a central

server and using an aggregation (i.e., weighted average) of the vectors from all

agents (first paragraph of Section 6.3.1). Next, define ∆t ,
∑N

n=1 ∆n,t. Note

that ∆̃
(i)
t ≤ ∆

(i)
t ≤ ∆t, ∀i = 1, . . . , P , and that

N∑
n=1

∆̃n,t ≤
N∑
n=1

∆n,t = ∆t, (C.6)

which will be useful in subsequent proofs.

C.1.2.2 Main Proof

The following lemma lower-bounds the probability that the selected input xt is

unsaturated.
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LemmaC.5 (Lemma 7 of Dai et al. (2020b)). For any filtrationFt−1, conditioned

on the event Ef (t), we have that with probability ≥ 1− δ/2,

P
(
xt ∈ X \ St|Ft−1

)
≥ Pt,

in which Pt , pt(p− 1/t2) and p = 1
4e
√
π
.

Proof. Firstly, we have that

P
(
xt ∈ X \ St|Ft−1

)
≥ P

(
xt ∈ X \ St|Ft−1, At

)
P(At)

= P
(
xt ∈ X \ St|Ft−1, At

)
pt.

(C.7)

Next, we can lower-bound the probability P
(
xt ∈ X \ St|Ft−1, At

)
following

Lemma 7 of Dai et al. (2020b) (i.e., Lemma B.7. in Appendix B.3), which leads

to P
(
xt ∈ X \ St|Ft−1, At

)
≥ (p− 1/t2) and completes the proof.

Next, we derive an upper bound on the expected instantaneous regret of our

DP-FTS-DE algorithm.

Lemma C.6. For any filtration Ft−1, conditioned on the event Ef (t), we have

that with probability of ≥ 1− 5δ/8

E[rt|Ft−1] ≤ ct

(
1 +

10

pp1

)
E
[
σt−1(xt)|Ft−1

]
+ 4BE

[
ϑt|Ft−1

]
+ ψt +

2B

t2
,

in which rt is the instantaneous regret: rt , f(x∗) − f(xt), ϑt , (1 −

pt)
∑P

i=1 ϕ̃
(i)
Ct , and

ψt , (1−pt)P

[(
ϕmax + 2

q
+ 6

)
∆t+B

(
2

q
+
Nϕmax

q

)
+

2zSϕmax

q

√
2M log

8M

δ

]
.

Proof. Firstly, we define xt as the unsaturated input at iteration twith the smallest
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posterior standard deviation according to agent A1’s own GP posterior:

xt , arg minx∈X\Stσt−1(x). (C.8)

Following this definition, for any Ft−1 such that Ef (t) is true, we have that

E
[
σt−1(xt)|Ft−1

]
≥ E

[
σt−1(xt)|Ft−1,xt ∈ X \ St

]
P
(
xt ∈ X \ St|Ft−1

)
≥ σt−1(xt)Pt,

(C.9)

in which the last inequality follows from the definition of xt and Lemma C.5.

Next, conditioned on both events Ef (t) and Eft(t), we have that

rt = ∆(xt) = f(x∗)− f(xt) + f(xt)− f(xt)

(a)

≤ ∆(xt) + ft(xt) + ctσt−1(xt)− ft(xt) + ctσt−1(xt)

(b)

≤ ctσt−1(xt) + ctσt−1(xt) + ctσt−1(xt) + ft(xt)− ft(xt)

= ct(2σt−1(xt) + σt−1(xt)) + ft(xt)− ft(xt),

(C.10)

in which (a) follows from the definition of ∆(x) and equation (C.2), and (b)

results from the fact that xt is unsaturated. Denote by i the sub-region to which

xt belongs given Ft−1. Next, we analyze the expected value of the underlined
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term given Ft−1:

E
[
ft(xt)− ft(xt)|Ft−1

]
(a)
= P (At)E

[
ft(xt)− ft(xt)|Ft−1, At

]
+ P (Bt)E

[
ft(xt)− ft(xt)|Ft−1, Bt

]
(b)

≤ P (Bt)E
[
ft(xt)− ft(xt)|Ft−1, Bt

]
(c)

≤ P (Bt)
P∑
i=1

P [xt ∈ Xi]E
[
ft(xt)− ft(xt)|Ft−1, Bt,xt ∈ Xi

]
≤ P (Bt)

P∑
i=1

E
[
ft(xt)− ft(xt)|Ft−1, Bt,xt ∈ Xi

]
(d)

≤ P (Bt)
P∑
i=1

E

 N∑
n=1

ϕ(i)
n f̃

n
t (xt) + ∆

(i)
t −

N∑
n=1

ϕ(i)
n f̃

n
t (xt) + ∆

(i)
t

∣∣∣∣Ft−1, Bt,xt ∈ Xi


(e)

≤ P (Bt)
P∑
i=1

E

[φ(xt)
> − φ(xt)

>
] N∑
n=1

ϕ(i)
n ωn,t + 2∆

(i)
t

∣∣∣∣Ft−1, Bt,xt ∈ Xi

 ,
(C.11)

in which (a) and (c) result from the tower rule of expectation; (b) follows

since conditioned on the event At, i.e., xt = arg maxx∈X ft(x), we have that

ft(xt)−ft(xt) ≤ 0; (d) results from Lemma C.4 and hence holds with probability

≥ 1−δ/2; (e) is a consequence of the definition of f̃nt : f̃nt (x) = φ(x)>ωn,t,∀x ∈

X . Next, we further decompose the underlined term
∑N

n=1 ϕ
(i)
n ωn,t by:

N∑
n=1

ϕ(i)
n ωn,t =

∑N
n=1 qϕ

(i)
n ωn,t

q
=

∑N
n=1 EIn [In]ϕ

(i)
n ωn,t

q

= EI1:n

[∑N
n=1 Inϕ

(i)
n ωn,t

q

]

= EI1:n

[∑N
n=1 Inϕ

(i)
n ωn,t

q
−
∑N

n=1 Inϕ
(i)
n ω̂n,t

q
− η +

∑N
n=1 Inϕ

(i)
n ω̂n,t

q
+ η

]
= EI1:n

[∑N
n=1 Inϕ

(i)
n ωn,t

q
−
∑N

n=1 Inϕ
(i)
n ω̂n,t

q
− η + ω

(i)
t

]
.

(C.12)
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Next, we plug (C.12) back into (C.11):

E
[
ft(xt)− ft(xt)|Ft−1

]
≤ P (Bt)

P∑
i=1

E

[ [
φ(xt)

> − φ(xt)
>
]
EI1:n

[∑N
n=1 Inϕ

(i)
n ωn,t

q
−
∑N

n=1 Inϕ
(i)
n ω̂n,t

q
− η

]
+

[
φ(xt)

>EI1:n [ω
(i)
t ]− φ(xt)

>EI1:n [ω
(i)
t ]
]

+ 2∆
(i)
t

∣∣∣∣Ft−1, Bt,xt ∈ Xi

]

≤ P (Bt)
P∑
i=1

E

[ [
φ(xt)

> − φ(xt)
>
]
EI1:n

[∑N
n=1 Inϕ

(i)
n ωn,t

q
−
∑N

n=1 Inϕ
(i)
n ω̂n,t

q

]
︸ ︷︷ ︸

A1

+

[
φ(xt)

>EI1:n [ω
(i)
t ]− φ(xt)

>ω
(i)
t︸ ︷︷ ︸

A2

+φ(xt)
>ω

(i)
t − φ(xt)

>ω
(i)
t︸ ︷︷ ︸

A3

+

φ(xt)
>ω

(i)
t − φ(xt)

>ω
(i)
t︸ ︷︷ ︸

A4

+φ(xt)
>ω

(i)
t − φ(xt)

>EI1:n [ω
(i)
t ]︸ ︷︷ ︸

A5

]

−
[
φ(xt)

> − φ(xt)
>
]
η︸ ︷︷ ︸

A6

+2∆
(i)
t

∣∣∣∣Ft−1, Bt,xt ∈ Xi

]

(C.13)

Next, we separately upper-bound the terms A1 to A6. Firstly, we bound the term

A1. Define Ct , {n = 1, . . . , N
∣∣∣∥∥ωn,t∥∥2

> S/
√
P}. That is, Ct contains the

indices of those agents whose vector of ωn,t has a larger L2 norm than S/
√
P in
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iteration t. A1 can thus be analyzed as:

∣∣∣∣ [φ(xt)
> − φ(xt)

>
]
EI1:n

[∑N
n=1 Inϕ

(i)
n ωn,t

q
−
∑N

n=1 Inϕ
(i)
n ω̂n,t

q

]∣∣∣∣
(a)
=

∣∣∣∣ [φ(xt)
> − φ(xt)

>
] N∑
n=1

ϕ(i)
n (ωn,t − ω̂n,t)

∣∣∣∣
(b)
=

∣∣∣∣ [φ(xt)
> − φ(xt)

>
]∑
n∈Ct

ϕ(i)
n (ωn,t − ω̂n,t)

∣∣∣∣
=

∣∣∣∣∑
n∈Ct

ϕ(i)
n

[
φ(xt)

> − φ(xt)
>
] [
ωn,t − ω̂n,t

] ∣∣∣∣
=

∣∣∣∣∑
n∈Ct

ϕ(i)
n

[
φ(xt)

>ωn,t + φ(xt)
>ω̂n,t − φ(xt)

>ω̂n,t − φ(xt)
>ωn,t

] ∣∣∣∣
≤
∑
n∈Ct

ϕ(i)
n

[∣∣φ(xt)
>ωn,t

∣∣+
∣∣φ(xt)

>ω̂n,t
∣∣+
∣∣φ(xt)

>ω̂n,t
∣∣+
∣∣φ(xt)

>ωn,t
∣∣]

≤
∑
n∈Ct

ϕ(i)
n

[∣∣φ(xt)
>ωn,t

∣∣+
∣∣φ(xt)

>ωn,t
∣∣+
∣∣φ(xt)

>ωn,t
∣∣+
∣∣φ(xt)

>ωn,t
∣∣]

≤ 2
∑
n∈Ct

ϕ(i)
n

[∣∣f̃nt (xt)
∣∣+
∣∣f̃nt (x)

∣∣]
(c)

≤ 2
∑
n∈Ct

ϕ(i)
n (∆̃n,t +B + ∆̃n,t +B)

= 4
∑
n∈Ct

ϕ(i)
n ∆̃n,t + 4

∑
n∈Ct

ϕ(i)
n B

(d)

≤ 4
N∑
n=1

ϕ(i)
n ∆̃n,t + 4Bϕ̃

(i)
Ct

(e)
= 4

(
∆̃

(i)
t +Bϕ̃

(i)
Ct

)
,

(C.14)

in which (a) follows since En[In] = q,∀n = 1, . . . , N ; (b) follows since for

those agents n 6∈ Ct, ωn,t − ω̂n,t = 0; (c) results from Lemma C.3 and that

|fn(x)| ≤ B, ∀x ∈ X , n = 1, . . . , N (this is because of our assumption that

‖fn‖k ≤ B, ∀n = 1, . . . , N , Section 6.2); (d) follows from the definition of

ϕ̃
(i)
Ct ,

∑
n∈Ct ϕ

(i)
n ; (e) results from the definition of ∆̃

(i)
t (C.3).

Subsequently, we upper-bound the terms A2 and A5. For any x ∈ X , we have
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that

∣∣∣φ(x)>EI1:n [ω
(i)
t ]− φ(x)>ω

(i)
t

∣∣∣
=
∣∣∣φ(x)>

EI1:n

[∑N
n=1 Inϕ

(i)
n ω̂n,t

q

]
−
∑N

n=1 Inϕ
(i)
n ω̂n,t

q

∣∣∣
=
∣∣∣φ(x)>

(∑N
n=1 qϕ

(i)
n ω̂n,t

q
−
∑N

n=1 Inϕ
(i)
n ω̂n,t

q

)∣∣∣
=
∣∣∣φ(x)>

1

q

N∑
n=1

(q − In)ϕ(i)
n ω̂n,t

∣∣∣ ≤ 1

q

N∑
n=1

∣∣∣(q − In)ϕ(i)
n φ(x)>ω̂n,t

∣∣∣
(a)

≤ 1

q

N∑
n=1

ϕ(i)
n

∣∣φ(x)>ω̂n,t
∣∣ (b)

≤ 1

q

N∑
n=1

ϕ(i)
n

∣∣φ(x)>ωn,t
∣∣

=
1

q

N∑
n=1

ϕ(i)
n

∣∣f̃nt (x)
∣∣ =

1

q

N∑
n=1

ϕ(i)
n

∣∣f̃nt (x)− fn(x) + fn(x)
∣∣

≤ 1

q

N∑
n=1

ϕ(i)
n

(
|f̃nt (x)− fn(x)|+ |fn(x)|

)
(c)

≤ 1

q

N∑
n=1

ϕ(i)
n

(
∆̃n,t +B

)
(d)
=

1

q

(
∆̃

(i)
t +B

)
,

(C.15)

in which (a) follows since |q − In| ≤ 1; (b) results from (C.1); (c) results from

Lemma C.3 and that |fn(x)| ≤ B, ∀x ∈ X , n = 1, . . . , N ; (d) results from the

definition of ∆̃
(i)
t (C.3).

Next, we upper-bound the term A3, which arises because the sub-regions i
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and i may be different. We have that for any x ∈ X ,

∣∣∣φ(x)>ω
(i)
t − φ(x)>ω

(i)
t

∣∣∣ =
∣∣∣φ(x)>

(
ω

(i)
t − ω

(i)
t

) ∣∣∣
=
∣∣∣φ(x)>

∑N
n=1 Inϕ

(i)
n ω̂n,t

q
−
∑N

n=1 Inϕ
(i)
n ω̂n,t

q

∣∣∣
≤ 1

q

N∑
n=1

In
∣∣∣ϕ(i)

n − ϕ(i)
n

∣∣∣∣∣∣φ(x)>ω̂n,t

∣∣∣
≤ 1

q

N∑
n=1

ϕmax

∣∣∣φ(x)>ω̂n,t

∣∣∣
(a)

≤ 1

q

N∑
n=1

ϕmax

∣∣∣φ(x)>ωn,t

∣∣∣
(b)

≤ 1

q

N∑
n=1

ϕmax

(
∆̃n,t +B

)
(c)

≤ ϕmax

q
(∆t +NB) ,

(C.16)

(a) follows because of (C.1); (b) results from Lemma C.3 and that |fn(x)| ≤

B, ∀x ∈ X , n = 1, . . . , N ; (c) follows from (C.6).

Next, regarding A4, note that conditioned on the event Bt, xt is selected by:

xt = arg maxx∈X φ(x)>ω
(i[x])
t in which i[x] represents the sub-region x belongs

to. Therefore, because xt ∈ Xi and xt ∈ Xi (since we are conditioning on this

event), we have that φ(xt)
>ω

(i)
t − φ(xt)

>ω
(i)
t ≤ 0. In other words, A4 ≤ 0.

Finally, The term A6 can be upper-bounded using standard Gaussian concen-

tration inequality:

∣∣∣ [φ(xt)
> − φ(xt)

>
]
η
∣∣∣ ≤∥∥φ(xt)− φ(xt)

∥∥
2
‖η‖2

≤
(∥∥φ(xt)

∥∥
2

+
∥∥φ(xt)

∥∥
2

)
‖η‖2

(a)

≤ 2‖η‖2

(b)

≤ 2zSϕmax

q

√
2M log

8M

δ
,

(C.17)

where (a) follows since the random features have been constructed such that∥∥φ(x)
∥∥2

2
= σ2

0 ≤ 1 (Dai et al., 2020b) (Appendix B.1), and (b) follows from
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standard Gaussian concentration inequality and hence holds with probability

> 1− δ/8.

Now we can exploit the upper bounds on the terms A1 to A6 we have derived

above (equations (C.14), (C.15), (C.16), (C.17)), and continue to upper-bound

E
[
ft(xt)− ft(xt)|Ft−1

]
following (C.13):

E[ft(xt)− ft(xt)|Ft−1] ≤ P(Bt)
P∑
i=1

E

[
4
(

∆̃
(i)
t +Bϕ̃

(i)
Ct

)
︸ ︷︷ ︸

A1

+
2

q

(
∆̃

(i)
t +B

)
︸ ︷︷ ︸

A2+A5

+

ϕmax

q
(∆t +NB)︸ ︷︷ ︸
A3

+
2zSϕmax

q

√
2M log

8M

δ︸ ︷︷ ︸
A6

+2∆
(i)
t

∣∣∣∣Ft−1, Bt,xt ∈ Xi

]

= (1− pt)
P∑
i=1

[
4

(
∆̃

(i)
t +BE

[
ϕ̃

(i)
Ct |Ft−1

])
+

2

q

(
∆̃

(i)
t +B

)
+

ϕmax

q
(∆t +NB) +

2zSϕmax

q

√
2M log

8M

δ
+ 2∆

(i)
t

]

= (1− pt)
P∑
i=1

[
4BE

[
ϕ̃

(i)
Ct |Ft−1

]
+

(
2

q
+ 4

)
∆̃

(i)
t + 2∆

(i)
t +

ϕmax

q
∆t+

B

(
2

q
+
Nϕmax

q

)
+

2zSϕmax

q

√
2M log

8M

δ

]
(a)

≤ (1− pt)
P∑
i=1

[
4BE

[
ϕ̃

(i)
Ct |Ft−1

]
+

(
2

q
+ 6 +

ϕmax

q

)
∆t+

B

(
2

q
+
Nϕmax

q

)
+

2zSϕmax

q

√
2M log

8M

δ

]

= 4BE

(1− pt)
P∑
i=1

ϕ̃
(i)
Ct |Ft−1

+ (1− pt)

[
P

(
2

q
+ 6 +

ϕmax

q

)
∆t+

PB

(
2

q
+
Nϕmax

q

)
+ P

2zSϕmax

q

√
2M log

8M

δ

]

= 4BE
[
ϑt|Ft−1

]
+ ψt,

(C.18)

where (a) follows because ∆̃
(i)
t ≤ ∆

(i)
t ≤ ∆t,∀i ∈ [P ]. In the last equality,
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we have made use of the definitions of ϑt and ψt. Note that since we have

made use of Lemma C.4 (C.11) which holds with probability ≥ 1 − δ/2, and

Gaussian concentration inequality (C.17) which holds with probability≥ 1−δ/8,

equation (C.18) holds with probability ≥ 1− δ/2− δ/8 = 1− 5δ/8.

Finally, we plug (C.18) back into (C.10):

E
[
rt|Ft−1

]
≤ E

[
ct(2σt−1(xt) + σt−1(xt)) + ft(xt)− ft(xt)|Ft−1

]
+ 2BP

[
Eft(t)|Ft−1

]
≤ E

[
ct(2σt−1(xt) + σt−1(xt))|Ft−1

]
+ E

[
ft(xt)− ft(xt)|Ft−1

]
+ 2BP

[
Eft(t)|Ft−1

]
(a)

≤ 2ct
Pt

E
[
σt−1(xt)|Ft−1

]
+ ctE

[
σt−1(xt)|Ft−1

]
+ 4BE

[
ϑt|Ft−1

]
+ ψt +

2B

t2

≤ ct

(
1 +

2

Pt

)
E
[
σt−1(xt)|Ft−1

]
+ 4BE

[
ϑt|Ft−1

]
+ ψt +

2B

t2

(b)

≤ ct

(
1 +

10

pp1

)
E
[
σt−1(xt)|Ft−1

]
+ 4BE

[
ϑt|Ft−1

]
+ ψt +

2B

t2
,

(C.19)

in which (a) follows from (C.9) and (C.18), and (b) follows since:

2

Pt
=

2

pt(p− 1
t2

)
≤ 10

ppt
≤ 10

pp1

, (C.20)

which was valid because 1/(p− 1/t2) ≤ 5/p and pt ≥ p1 for all t ≥ 1.

Note that since the proof of (C.19) makes use of (C.18), therefore, (C.19), as

well as Lemma C.6, also holds with probability of ≥ 1− 5δ/8.
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Lemma C.7. Given δ ∈ (0, 1), then with probability of at least 1− δ,

RT ≤cT
(

1 +
10

pp1

)
O(
√
TγT ) +

T∑
t=1

ψt +
Bπ2

3
+ 4B

T∑
t=1

ϑt+[
cT

(
1 +

4B

p
+

10

pp1

)
+ ψ1 + 4B

]√
2T log

8

δ
,

in which γT is the maximum information gain about f obtained from any set of T

observations.

Proof. The proof resembles the that of Lemma 11 of Dai et al. (2020b) (Lemma

B.11. of Appendix B), and is hence omitted. Note that an error probability of

δ/8 has been used here for the Azuma-Hoeffding Inequality in the proof.

Finally, we are ready to prove Theorem 6.1. Recall we have that ct =

O
((

B +
√
γt + log(1/δ)

)√
log t

)
. Therefore,

RT = O

(
1

p1

(
B +

√
γT + log

1

δ

)√
log T

√
TγT +

T∑
t=1

ψt +B
T∑
t=1

ϑt+(
B +

1

p1

)(
B +

√
γT + log

1

δ

)√
log T

√
T log

1

δ

)

= O

(B +
1

p1

)√
T log TγT log

1

δ

(
γT + log

1

δ

)
+

T∑
t=1

ψt +B
T∑
t=1

ϑt


= Õ

(B +
1

p1

)
γT
√
T +

T∑
t=1

ψt +B
T∑
t=1

ϑt

 ,

(C.21)

which finally completes the proof.

C.2 Experiments

As we have mentioned in the main text (Section 6.5), to design the sets of weights

for different sub-regions, for every sub-region Xi, we choose the corresponding
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set of weights such that ϕ(i)
n ∝ exp(a) for those agents exploring the sub-region

Xi, and ϕ(i)
n ∝ exp(b) for the other agents, with a ≥ b > 0. For the synthetic

experiments, we design the adaptive weights by fixing b = 1, setting a = 16

for the first 5 iterations, and decaying the value of a linearly to b = 1 in the

next 5 iterations (i.e., a = 16 for t = 1, . . . , 5, and a = 16, 12.25, 8.5, 4.75, 1

for t = 6, . . . , 10 respectively). After the first 10 iterations, the weights for all

sub-regions become uniform among all agents (i.e., a = b = 1,∀t > 10). In this

way, for every sub-region Xi, in the early stage, we give most weights to those

agents exploring Xi, whereas as t becomes large, we gradually make the weights

become uniform among all agents. Similarly, for all real-world experiments,

we fix b = 1 and a = 16 for the first 10 iterations, and then decay a linearly to

b = 1 in the next 30 iterations, such that the weights for every sub-region become

uniform among all agents after the first 40 iterations. All our experiments are

performed on a computing cluster where each device has one NVIDIA Tesla T4

GPU and 48 cores of Xeon Silver 4116 (2.1Ghz) processors.

C.2.1 Synthetic Experiments

C.2.1.1 Detailed Experimental Setting

Our synthetic experiments involve N = 200 agents. We define the domain of the

synthetic functions to be 1-dimensional and discrete, i.e., an equally spaced grid

on the 1-dimensional interval [0, 1]with a domain size of |X | = 1000. To generate

the objective functions for the N = 200 different agents, we firstly sample a

function f from a GP with the SE kernel and a length scale of 0.03, and normalize

the function values into the range [0, 1]. Next, for every agentAn,∀n = 1, . . . , N ,

we go through all |X | = 1000 inputs in the entire domain, and for each input x, we

derive the function value for agent An as fn(x) = f(x) + d, in which d = 0.02

or = −0.02 with equal probability (i.e., a probability of 0.5 each). In this way,
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Figure C.1: Comparisons of the performances of DP-FTS (without DE) and
DP-FTS-DE. For a fair comparison, we have used S = 8 and S = 11 for DP-FTS
and DP-FTS-DE respective, such that a similar small percentage vectors are
clipped for both algorithms (0.31% for DP-FTS and 0.80% for DP-FTS-DE). We
have used z = 1.0 for both algorithms.

the objective functions of all agents are related to each other. When observing

a function value, we add a Gaussian noise ζ ∼ N (0, σ2) with a variance of

σ2 = 0.01 (Section 6.2).

To construct the P sub-regions to be used for distributed exploration (DE),

we simply need to divide the interval [0, 1] into P disjoint hyper-rectangles with

equal volumes. For example, when P = 2, the two sub-regions contain the

inputs in the sub-regions [0, 0.5) and [0.5, 1] respectively; when P = 3, the three

sub-regions include the inputs in the sub-regions [0, 1/3), [1/3, 2/3) and [2/3, 1]

respectively.

C.2.1.2 More Experimental Results

Comparison between DP-FTS-DE and DP-FTS.We have shown in the main

text (Fig. 6.3a) that FTS-DE significantly outperforms FTS without DE. Here,

we demonstrate in Fig. C.1 that after DP is integrated, DP-FTS-DE still yields a

significantly better utility than DP-FTS for the same level of privacy guarantee

(loss). These results justify the practical benefit of the technique of DE (Sec-

tion 6.3.2). Note that for a fair comparison, we have used a smaller value of S

for DP-FTS without DE such that a similar percentage of vectors are clipped for

both DP-FTS-DE and DP-FTS.
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Figure C.2: Investigating the importance of both major components of the
technique of distributed exploration (DE). The orange curve is obtained by giving
equal weights to all agent for every sub-region, and the purple curve is derived by
letting every agent explore the entire domain at initialization instead of a local
sub-region.

Investigation of DE. We also investigate the importance of both of the major

components of the DE technique (Section 6.3.2): (a) assigning every agent to

explore only a local sub-region instead of the entire domain, and (b) giving more

weights to those agents exploring the particular sub-region. In Fig. C.2, the

orange curve is obtained by removing component (b) (i.e., in every iteration and

for each sub-region, we give equal weights to all agents), the purple curve is

derived by removing component (a) (i.e., letting every agent explore the entire

domain at initialization instead of a smaller local sub-region). As the figure

shows, the performances of both the orange and purple curves are significantly

worse than our FTS-DE algorithm (red curve), which verifies that both of these

components are critical for the practical performance of FTS-DE.

Trade-off Induced by P . As we have discussed at the end of Section 6.4.2,

the value of P (i.e., the number of sub-regions) induces a trade-off about the

practical performance of our DP-FTS-DE algorithm. Here we empirically verify

this trade-off in Fig. C.3. As shown in the figure, for the same values of q,

z and S, a smaller value of P (i.e., larger local sub-regions) may deteriorate

the performance (orange curve) since larger sub-regions are harder for the GP

surrogate to model, however, a larger value of P may also result in a worse

performance (yellow curve) since it causes the vectors from more agents to be
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Figure C.3: Trade-off induced by P regarding the practical performance of our
DP-FTS-DE algorithm. Note that a larger P reduces the size of every local
sub-region and hence leads to a better modeling by the GP surrogates, yet also
negatively impacts the performance by causing more vectors to be clipped. Here
we have used q = 0.25, z = 1.0, S = 11.0 for all values of P .

clipped (Section 6.4.2). These observations verify our discussions in the last

paragraph of Section 6.4.2.

C.2.2 Real-world Experiments

C.2.2.1 More Experimental Details

In all real-world experiments, when generating the random features for the RFF

approximation, we use the SE kernel with a length scale of 0.01 and a variance of

σ2 = 10−6 for the observation noise. Refer to Appendix B.1 for more details on

how the random features are generated and how they are shared among all agents.

As we have mentioned in the main text, we use P = 4 sub-regions in

all three real-world experiments, and divide the entire domain into P = 4

hyper-rectangles (i.e., sub-regions) with equal volumes. Following the common

practice in BO, we assume that the domain X ∈ RD is a D-dimensional

hyper-rectangle, and w.l.o.g., assume that every dimension of the domain is

normalized into the range [0, 1]. That is, the domain can be represented as

[0, 1]D = {[0, 1], [0, 1], . . . , [0, 1]}. Note that every domain which is a hyper-

rectangle can be normalized into this form. As a result, when the input dimension

isD = 2 (i.e., the landmine detection experiment), we construct the P = 4 hyper-
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rectangles such that X1 = {[0, 0.5), [0, 0.5)}, X2 = {[0, 0.5), [0.5, 1.0]}, X3 =

{[0.5, 1.0], [0, 0.5)} and X4 = {[0.5, 1.0], [0.5, 1.0]}. Similarly, when the input

dimensionD = 3 (i.e., the human activity recognition and EMNIST experiments),

we construct the P = 4 hyper-rectangles such that X1 = {[0, 0.5), [0, 0.5), [0, 1]},

X2 = {[0, 0.5), [0.5, 1.0], [0, 1]}, X3 = {[0.5, 1.0], [0, 0.5), [0, 1]} and X4 =

{[0.5, 1.0], [0.5, 1.0], [0, 1]}.

The datasets and detailed settings for the landmine detection and human

activity recognition experiments have been introduced in Appendix B.4.2.2.

The EMNIST dataset1 used in the third experiment is a dataset of images of

handwritten characters from different persons, and is a widely used benchmark in

FL Kairouz et al. (2019). Here we use the images from the first N = 50 subjects

(agents) which can be accessed from the TensorFlow Federated library2. Every

subject (agent) uses a convolutional neural network (CNN) to learn to classify an

image into one of the ten classes corresponding to the digits 0− 9. Here the task

for every agent is to tune three CNN hyperparameters: learning rate, learning

rate decay and L2 regularization parameter, all in the range of [10−7, 0.02]. We

follow the standard training/validation split offered by the TensorFlow Federated

library for every agent, and again use the validation error as the performance

metric. All images are pre-processed by normalizing all pixel values into the

range of [0, 1], and no data is excluded. Refer to Cohen et al. (2017) for more

details on this dataset.

C.2.2.2 Comparison between DP-FTS-DE and DP-FTS

We have shown in the main text (Figs. 6.5a,c,e) that FTS-DE significantly

outperforms FTS without DE. Here we further verify in Fig. C.4 the importance

of the technique of DE after DP is integrated, using the human activity recognition

experiment. Specifically, the figures show that after the incorporation of DP,

1https://www.nist.gov/itl/products-and-services/emnist-dataset.
2https://www.tensorflow.org/federated.
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Figure C.4: Comparison between DP-FTS and DP-FTS-DE for the same level of
privacy guarantee (the human activity recognition experiment). We have used
S = 22 and S = 11 for DP-FTS-DE and DP-FTS (without DE) respectively,
such that a similar percentage of vectors are clipped in both cases: 1.02% for
DP-FTS-DE and 1.09% for DP-FTS.
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Figure C.5: Results for the landmine detection experiment using Rényi DP Wang
et al. (2019).

DP-FTS-DE (green curves in all three figures) still achieves a better utility than

DP-FTS (purple curves) for the same level of privacy guarantee (loss). Note that

same as Fig. C.1, to facilitate a fair comparison, we have used a smaller value of

S for DP-FTS without DE such that a similar percentage of vectors are clipped

for both DP-FTS-DE and DP-FTS.

C.2.2.3 Rényi DP

Fig. C.5 shows the privacy-utility trade-off in the landmine detection experiment

using Rényi DPWang et al. (2019). The results demonstrate that Rényi DP, despite

requiring modifications to our theoretical analysis (i.e., proof of Theorem 6.1),

leads to slightly better privacy losses (compared with Fig. 6.5a) with comparable

utilities.
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C.2.2.4 Adaptive Weights vs. Non-adaptive Weights

As we have discussed in the last paragraph of Section 6.3.2, we have designed the

set of weights for every sub-region to be adaptive such that they gradually become

uniform among all agents as t becomes large. Here we explore the performance

of our algorithm if the weights are non-adaptive, i.e., for every sub-region Xi,

we fix the set of weights {ϕ(i)
n , ∀n = 1, . . . , N} for all t = 1, . . . , T . Similar to

our setting of the adaptive weights as we have introduced in the first paragraph

of Appendix C.2, for a sub-region Xi, we set ϕ(i)
n ∝ exp(a) for those agents

exploring this particular sub-region Xi, and ϕ(i)
n ∝ exp(b) for the other agents.

However, for every sub-region Xi, we now use the same set of weights throughout

all iterations by fixing a = 16, b = 1 for all t = 1, . . . , T .

Fig. C.6 shows the comparisons between adaptive and non-adaptive weights

using (a) the synthetic experiment and (b) human activity recognition experiment.

Both figures show that although in the initial stage, DP-FTS-DEwith non-adaptive

weights performs similarly to DP-FTS-DE with adaptive weights, however, as t

becomes large, adaptive weights (red curves) lead to better performances than

non-adaptive weights (green curves). This can be attributed to the fact that as t

becomes large, every agent is likely to have explored (and become informative

about) more sub-regions in addition to the sub-region that it is assigned to explore

at initialization. Therefore, if the weights are non-adaptive, i.e., for a sub-region

Xi, if after t has become large, most weights are still given to those agents that

are assigned to explore Xi at initialization, then the information from the other

agents who are likely to have become informative about Xi (i.e., have collected

some observations in Xi) is not utilized. This under-utilization of information

might explain the performance deficit caused by the use of non-adaptive weights.

However, note that despite being outperformed by DP-FTS-DE with adaptive

weights, DP-FTS-DE with non-adaptive weights (green curve) is still able to

consistently outperform standard TS (blue curves).
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Figure C.6: Comparison between DP-FTS-DE with adaptive weights and non-
adaptive weights, using (a) the synthetic experiment and (b) human activity
recognition experiment.

C.2.2.5 Computational Cost

When maximizing the acquisition function to select the next query (lines 5 and 7

of Algorithm 6.2), firstly, we uniformly randomly sample a large number (i.e.,

1000) of points from the entire domain; next, we use the L-BFGS-B method with

20 random restarts to refine the optimization.

For the central server, the integration of DP and DE (in expectation) incurs an

additional computational cost of O(PNq). However, these additional computa-

tions are negligible since they only involve simple vector additions/multiplications

(lines 5-11 of Algorithm 6.1). For agents, the incorporation of DP brings no

additional computational cost to them. Meanwhile, the addition of DE, which

affects line 7 of Algorithm 6.2, only incurs minimal additional computations. For

example, in the landmine detection experiment, line 7 takes on average 14.47s

and 17.96s to compute for P = 1 and P = 4, respectively.
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Appendix D

Appendix for Chapter 7

D.1 Proof of Theoretical Results

To facilitate the theoretical analysis, we introduce the following auxiliary term:

ζ̃t(x) = νt

 M∑
i=1

ωi
[
µ̃i(x) +

√
τ σ̃i(x)

]+ (1− νt)
[
µt−1(x) +

√
βtσt−1(x)

]
(D.1)

in which µ̃i(x) and σ̃i(x) are obtained by replacing each noisy output of the meta-

observations yi,j in the calculation of µi(x) and σi(x) (7.1) by the (hypothetically

available) noisy target function output observation at the corresponding input

xi,j . Eq. (D.1) will serve as the bridge to connect the acquisition function (7.1)

with the target function f in the subsequent theoretical analysis, which will be

demonstrated in Appendix D.1.2. The next lemma shows that the difference

between ζt(x) (7.1) and ζ̃t(x) (D.1) is bounded ∀x ∈ D, whose proof is given in

Appendix D.1.1.

Lemma D.1. Let δ ∈ (0, 1). Suppose the RM-GP-UCB algorithm is run with

parameters νt ∈ [0, 1]∀t ≥ 1, andωi ≥ 0 for i = 1, . . . ,M and
∑

i=1,...,M ωi = 1.
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Then with probability ≥ 1− δ/3,

∣∣∣ζt(x)− ζ̃t(x)
∣∣∣ ≤ νtα ∀x ∈ D

in which

α ,
M∑
i=1

ωiαi,

αi ,
Ni

σ2

(
2
√
Ni

√
2σ2 log

6Ni

δ
+ di

√
Ni

)
.

Next, we need the following lemma that shows upper and lower bounds on

the target function values, which follows from Gaussian concentration inequality

and will be used extensively in the subsequent proofs.

Lemma D.2. Let δ ∈ (0, 1) and βt = 2 log(|D|t2π2/2δ), then

|f(x)− µt−1(x)| ≤
√
βtσt−1(x) ∀x ∈ D, t ≥ 1

which holds with probability ≥ 1− δ/3. Furthermore, let τ = 2 log(3|D|M/δ),

we get

|f(x)− µ̃i(x)| ≤
√
τ σ̃i(x) ∀x ∈ D, i = 1, ...,M

which also holds with probability ≥ 1− δ/3.

Note that µ̃i(x) and σ̃i(x) are defined in (D.1), and Lemma D.2 can be proven

with a slight modification to Lemma 5.1 of Srinivas et al. (2010).

D.1.1 Proof of Lemma D.1

Let Ki = [k(xi,j,xi,j′)]j,j′=1,...,Ni represent the Gram matrix corresponding to the

inputs of the meta-observations from meta-task i, and ki = [k(xi,j,x)]>j=1,...,Ni
.

Denote by λj[A] the j-th eigenvalue of matrix A.
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Firstly, we need the following lemma proving an upper bound on Frobenius

norm:

Lemma D.3. ∥∥∥(Ki + σ2I
)−1
∥∥∥
F
≤
√
Ni

σ2
.

Proof.

∥∥∥(Ki + σ2I
)−1
∥∥∥
F

(a)
=

√
Tr
(

(Ki + σ2I)−1
(

(Ki + σ2I)−1
)T)

(b)
=

√
Tr
(

(Ki + σ2I)−1 (Ki + σ2I)−1
)

(c)
=

√√√√ Ni∑
j=1

λj

[
(Ki + σ2I)−1 (Ki + σ2I)−1

]

=

√√√√ Ni∑
j=1

(
λj

[
(Ki + σ2I)−1

])2

=

√√√√ Ni∑
j=1

(
1

λj [Ki + σ2I]

)2

=

√√√√ Ni∑
j=1

(
1

λj [Ki] + σ2

)2

(d)
≤

√√√√ Ni∑
j=1

1

(σ2)2
=

√
Ni

σ2

in which (a) results from the definition of matrix Frobenius norm, (b) follows

since Ki + σ2I (hence its inverse) is symmetric, (c) holds since the trace of a

matrix is equal to the sum of its eigenvalues, the ensuing equalities make use of

several identities of matrix eigenvalues. (d) follows because all eigenvalues of

Ki are non-negative since Ki is positive semi-definite (because the kernel k is

positive semi-definite).

Next, define f i = [fi(xi,j)]j=1,...,Ni (in which fi(xi,j) represents the value

of meta-function i at input xi,j), and f̃i = [f(xi,j)]j=1,...,Ni (in which f(xi,j)
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represents the value of target function at input xi,j). Similarly, define yi =

[yi,j]j=1,...,Ni (in which yi,j represents the noisy output observation of meta-

task i at input xi,j), and ỹi = [y(xi,j)]j=1,...,Ni (in which y(xi,j) represents the

hypothetically observed noisy output observation of the target function at input

xi,j). With these definitions, the next lemma shows upper bounds on the distance

between yi and f i, as well as that distance between ỹi and f̃i.

Lemma D.4. With probability ≥ 1− δ/3,

∥∥∥yi − f i

∥∥∥
2
≤
√
Ni

√
2σ2 log

6Ni

δ
,∥∥∥ỹi − f̃i

∥∥∥
2
≤
√
Ni

√
2σ2 log

6Ni

δ
.

Proof. Following the same analysis as Lemma 5.1 of Srinivas et al. (2010), we

have that for the standard Gaussian random variable z ∼ N (0, 1),

P(|z| > c) ≤ e−
c2

2 . (D.2)

Since for each j = 1, . . . , Ni, we have that yi,j − fi(xi,j) ∼ N (0, σ2) and that

y(xi,j)− f(xi,j) ∼ N (0, σ2), which leads to the following,

P

(∣∣∣∣yi,j − fi(xi,j)σ

∣∣∣∣ >
√

2 log
6Ni

δ

)
= P

(∣∣yi,j − fi(xi,j)∣∣ >√2σ2 log
6Ni

δ

)

≤ δ

6Ni

,

P

(∣∣∣∣y(xi,j)− f(xi,j)

σ

∣∣∣∣ >
√

2 log
6Ni

δ

)
= P

(∣∣y(xi,j)− f(xi,j)
∣∣ >√2σ2 log

6Ni

δ

)

≤ δ

6Ni

.

Taking a union bound over j = 1, . . . , Ni for each of the two equations above,
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we have that for all j = 1, . . . , Ni,

∣∣yi,j − fi(xi,j)∣∣ ≤√2σ2 log
6Ni

δ
,

∣∣y(xi,j)− f(xi,j)
∣∣ ≤√2σ2 log

6Ni

δ
,

both of which hold with probability ≥ 1 − δ/6. Therefore, with probability

≥ 1− δ/6,

∥∥∥yi − f i

∥∥∥
2

=

√√√√ Ni∑
j=1

∣∣yi,j − fi(xi,j)∣∣2 ≤
√√√√ Ni∑

j=1

2σ2 log
6Ni

δ

≤
√
Ni

√
2σ2 log

6Ni

δ
.

(D.3)

Repeating the procedure above leads to

∥∥∥ỹi − f̃i

∥∥∥
2
≤
√
Ni

√
2σ2 log

6Ni

δ
(D.4)

which also holds with probability ≥ 1 − δ/6. Taking a union bound over

equations (D.3) and (D.4) completes the proof.

With these supporting lemmas, Lemma D.1 can be proven as follows:

‖ζt(x)− ζ̃t(x)‖ (D.5)

=

∣∣∣∣∣∣νt
 M∑
i=1

ωi[µi(x) +
√
τσi(x)]

− νt
 M∑
i=1

ωi[µ̃i(x) +
√
τ σ̃i(x)]

∣∣∣∣∣∣
(a)
=

∣∣∣∣∣∣νt
M∑
i=1

ωi[µi(x)− µ̃i(x)]

∣∣∣∣∣∣
≤ νt

M∑
i=1

ωi
∣∣µi(x)− µ̃i(x)

∣∣
≤ νt

M∑
i=1

ωi

∣∣∣ki(x)>(Ki + σ2I)−1(yi − ỹi)
∣∣∣
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(b)
≤ νt

M∑
i=1

ωi
∥∥ki(x)

∥∥
2

∥∥(Ki + σ2I)−1
∥∥
F
‖yi − ỹi‖2

(c)
≤ νt

M∑
i=1

ωi
∥∥ki(x)

∥∥
2

√
Ni

σ2
‖yi − ỹi‖2

(d)
≤ νt

M∑
i=1

ωi
√
Ni

√
Ni

σ2
‖yi − ỹi‖2

≤ νt

M∑
i=1

ωi
Ni

σ2

∥∥∥yi − f i + f i − f̃i + f̃i − ỹi

∥∥∥
2

≤ νt

M∑
i=1

ωi
Ni

σ2

[∥∥∥yi − f i

∥∥∥
2

+
∥∥∥f i − f̃i

∥∥∥
2

+
∥∥∥f̃i − ỹi

∥∥∥
2

]
(e)
≤ νt

M∑
i=1

ωi
Ni

σ2

(
2
√
Ni

√
2σ2 log

6Ni

δ
+
∥∥∥f i − f̃i

∥∥∥
2

)

= νt

M∑
i=1

ωi
Ni

σ2

2
√
Ni

√
2σ2 log

6Ni

δ
+

√√√√ Ni∑
j=1

(
fi(xi,j)− f(xi,j)

)2


(f)
≤ νt

M∑
i=1

ωi
Ni

σ2

(
2
√
Ni

√
2σ2 log

6Ni

δ
+ di

√
Ni

)

, νtα (D.6)

which holds with probability ≥ 1 − δ/3. (a) holds because σi(x) = σ̃i(x) for

all x ∈ D, since we have assumed that f and all fi’s are sampled from the

same GP with kernel k and the posterior standard deviation only depends on

the input locations, and is independent of the corresponding output responses;

(b) follows from Cauchy-Schwarz inequality, (c) follows from Lemma D.3, (d)

results from the assumption that k (x,x′) ≤ 1 for all x,x′ ∈ D, (e) follows

from Lemma D.4, (f) is obtained from the definition of the function gap:

di , maxj=1,...,Ni

∣∣f(xi,j)− fi(xi,j)
∣∣ for i = 1, . . . ,M . This completes the

proof of Lemma D.1.
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D.1.2 Proof of Theorem 7.1

To begin with, we need the following lemma showing a high-probability upper

bound on the global maximum of the target function.

Lemma D.5. Given δ ∈ (0, 1). Let x∗ denote a global maximizer of the target

function f , and α be as defined in Lemma D.1. Suppose the RM-GP-UCB

algorithm is run with the parameter νt ∈ [0, 1] for all t ≥ 1. Then, with

probability ≥ 1− δ,

f(x∗) ≤ ζt(xt) + νtα ∀t ≥ 1.

Proof. Firstly, as a result of Lemma D.2, at any iteration t ≥ 1 and for all x ∈ D,

we have that with probability≥ 1− δ/3− δ/3, ζ̃t(x) is an upper bound on f(x):

ζ̃t(x)− f(x) = ζ̃t(x)−

νt M∑
i=1

ωif(x) + (1− ηt)f(x)


= νt

M∑
i=1

ωi
[
µ̃i(x) +

√
τ σ̃i(x)− f(x)

]
+

(1− νt)
[
µt−1(x) +

√
βtσt−1(x)− f(x)

]
≥ 0.

(D.7)

Therefore, with probability ≥ 1− δ/3− δ/3− δ/3,

f(x∗)
(a)
≤ ζ̃t(x

∗)
(b)
≤ ζt(x

∗) + νtα
(c)
≤ ζt(xt) + νtα (D.8)

in which (a) results from (D.7), (b) is obtained via Lemma D.1, and (c) follows

from the policy for selecting xt, i.e., by maximizing (7.1). This completes the

proof.

Subsequently, we can show a high-probability upper bound on the instanta-

neous regret with the following lemma .
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Lemma D.6. Given δ ∈ (0, 1). Let α be as defined in Lemma D.1. Suppose

the RM-GP-UCB algorithm is run with the parameters βt, τ and νt. Then, with

probability ≥ 1− δ,

rt ≤ 2νt(α +
√
τ) + 2(1− νt)

√
βtσt−1(xt).

Proof. The instantaneous regret can be upper-bounded by

rt = f(x∗)− f(xt)
(a)
≤ ζt(xt) + νtα− f(xt)

≤ ζt(xt)− ζ̃t(xt) + ζ̃t(xt)− f(xt) + νtα

(b)
≤ νtα + νt

M∑
i=1

ωi
[
ũi(xt) +

√
τ σ̃i(xt)

]
+ (1− νt)

[
ut−1(xt) +

√
βtσt−1(xt)

]
− f(xt) + νtα

= νtα + νt

M∑
i=1

ωi
[
ũi(xt) +

√
τ σ̃i(xt)

]
+ (1− νt)

[
ut−1(xt) +

√
βtσt−1(xt)

]

−

νt M∑
i=1

ωif(xt) + (1− νt)f(xt)

+ νtα

≤ νtα + νt

M∑
i=1

ωi
[
ũi(xt)− f(xt)

]
+ νt

M∑
i=1

ωi
√
τ σ̃i(xt)

+ (1− νt)
[
ut−1(xt)− f(xt)

]
+ (1− νt)

√
βtσt−1(xt) + νtα

(c)
≤ 2νtα + 2νt

M∑
i=1

ωi
√
τ σ̃i(xt) + 2(1− νt)

√
βtσt−1(xt)

(d)
≤ 2νtα + 2νt

√
τ + 2(1− νt)

√
βtσt−1(xt)

= 2νt(α +
√
τ) + 2(1− νt)

√
βtσt−1(xt)

(D.9)

which holds with probability ≥ 1− δ. (a) follows from Lemma D.5, (b) results

from Lemma D.1 as well as the definition of ζ̃t(xt) (D.1), (c) is a result of

Lemma D.2, and (d) follows because σ̃i(xt) ≤ 1 for all xt ∈ D, which can

be easily verified using the formula of the GP posterior variance (2.1) and the
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assumption that k(x,x′) ≤ 1 for all x,x′ ∈ D.

Next, we need to connect the second term from Lemma D.6 with the

information gain. The following lemma, which is Lemma 5.3 of Srinivas et al.

(2010), defines the information gain on the target function from any set of

observations.

Lemma D.7. Let fT and yT denote the set of function values and noisy observa-

tions of the target function respectively after T iterations. Then, the information

gain about f from the first T observations can be expressed as

I(yT ; fT ) =
1

2

T∑
t=1

log
[
1 + σ−2σ2

t−1(xt)
]
.

Subsequently, we can upper bound the second term fromLemmaD.6 (summed

from iterations 1 to T ) by the maximum information gain via the following lemma.

Lemma D.8. Suppose the RM-GP-UCB algorithm is run with the parameters βt

∀t ≥ 1 and a non-increasing sequence νt ∈ [0, 1] ∀t ≥ 1. Define the maximum

information gain as γT = maxA∈D,|A|=T I(yA; fA) in which fA and yA represent

the function values and noisy observations from a set A of inputs of size T . Then,

T∑
t=1

[
2(1− νt)

√
βtσt−1(xt)

]2

≤ (1− νT )2C1βTγT

in which C1 , 8
log(1+σ−2)

.

Proof. Each term inside the summation can be upper-bounded by

4(1− νt)2βtσ
2
t−1(xt)

(a)
≤ 4(1− νT )2βTσ

2
(
σ−2σ2

t−1(xt)
)

(b)
≤ 4(1− νT )2βTσ

2

(
σ−2

log(1 + σ−2)
log
(
1 + σ−2σ2

t−1(xt)
))

= (1− νT )2βT
8

log(1 + σ−2)

[
1

2
log
(
1 + σ−2σ2

t−1(xt)
)]
(D.10)

230



D.1. PROOF OF THEORETICAL RESULTS

in which (a) follows since βt is non-decreasing in t and νt is non-increasing

in t, (b) follows since σ−2x ≤ σ−2

log(1+σ−2)
log(1 + σ−2x) for all x ∈ (0, 1] and

σ2
t−1(xt) ∈ (0, 1].

As a result, the summation can be decomposed as

T∑
t=1

[
2(1− νt)

√
βtσt−1(xt)

]2

(a)
≤ (1− νT )2βT

8

log(1 + σ−2)

T∑
t=1

[
1

2
log
(
1 + σ−2σ2

t−1(xt)
)]

(b)
= (1− νT )2βT

8

log(1 + σ−2)
I(yT ; fT )

(c)
≤ (1− νT )2C1βTγT

in which (a) results from (D.10), (b) follows from Lemma D.7, and (c) is obtained

by making use of the definition of C1 and γT .

Finally, an upper bound on the cumulative regret follows from combining

these supporting lemmas:

RT =
T∑
t=1

rt
(a)
≤

T∑
t=1

[
2νt(α +

√
τ) + 2 (1− νt)

√
βtσt−1(xt)

]
= 2(α +

√
τ)

T∑
t=1

νt +
T∑
t=1

2(1− νt)
√
βtσt−1(xt)

(b)
≤ 2(α +

√
τ)

T∑
t=1

νt +
√
T

√√√√ T∑
t=1

[
2(1− νt)

√
βtσt−1(xt)

]2

(c)
≤ 2(α +

√
τ)

T∑
t=1

νt +
√
C1T (1− νT )2βTγT

(D.11)

which holds with probability ≥ 1− δ. (a) is a result of Lemma D.6, (b) follows

from Cauchy-Schwarz inequality, and (c) is obtained using Lemma D.8. This

completes the proof.
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D.1.3 Meta-tasks Can Improve the Convergence by Accelerat-

ing Exploration

Here, we utilize the analysis in Appendix D.1.2 to illustrate how the meta-tasks

(if similar to the target task) can help RM-GP-UCB obtain a better regret bound

than standard GP-UCB in the early stage of the algorithm. For simplicity, we

focus on the most favorable scenario where all meta-functions have equal values

to the target function at their corresponding input locations, i.e., all function

gaps are 0: di , maxj=1,...,Ni

∣∣f(xi,j)− fi(xi,j)
∣∣ = 0,∀i = 1, . . . ,M . Although

not realistic, this scenario is useful for illustrating how the meta-tasks help our

RM-GP-UCB algorithm achieve a better convergence at the initial stage.

In this case, according to the definition of ζ̃t (D.1) and ζt (7.1), we have that

ζ̃t(x) = ζt(x),∀x ∈ D, t ≥ 1. As a result, the analysis of (D.8) in the proof of

Lemma D.5 can be similarly applied, yielding:

f(x∗) ≤ ζ̃t(x
∗) = ζt(x

∗) ≤ ζt(xt). (D.12)

Next, we can re-analyze the instantaneous regret following similar steps to (D.9):

rt = f(x∗)− f(xt) ≤ ζt(xt)− f(xt)

≤ 2νt

M∑
i=1

ωi
√
τσi(xt) + 2(1− νt)

√
βtσt−1(xt)

= 2νt

 M∑
i=1

ωi
√
τσi(xt)−

√
βtσt−1(xt)


︸ ︷︷ ︸

A1

+ 2
√
βtσt−1(xt)︸ ︷︷ ︸

A2

,

(D.13)

in which some intermediate steps that are identical to those used in (D.9) have

been omitted for simplicity. Note that term A2 in (D.13) is identical to the upper

bound on the instantaneous regret for standard GP-UCB (Srinivas et al., 2010).
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Therefore, the meta-tasks affect the upper bound on the instantaneous regret

through the term A1.

Recall Corollary 7.1 has told us that we should choose νt → 0 as t→∞. In

the initial stage of the algorithm when νt is large, the impact of A1 on the regret

of the algorithm is large. In this case, the meta-tasks improve the upper bound on

the instantaneous regret (compared with standard GP-UCB) if A1 < 0, that is:

M∑
i=1

ωiσi(xt) <

√
βt
τ
σt−1(xt). (D.14)

In other words, RM-GP-UCB converges faster than standard GP-UCB in the

initial stage if the (weighted combination of) meta-tasks have smaller uncertainty

(i.e., posterior standard deviation) at xt compared with the target task (scaled

by
√
βt/τ ). Fortunately, in the early stage of the algorithm, this condition is

highly likely to be satisfied: When the number of observations of the target task

is small, the posterior standard deviation of the target GP posterior (i.e., RHS of

Equation (D.14)) is usually large; therefore, Equation (D.14) is highly likely to

be satisfied. This insight turns out to have an intuitive and elegant interpretation

as well. In the initial stage of the standard GP-UCB algorithm, due to the lack

of observations, the algorithm has large uncertainty regarding the objective

function and hence tends to explore; however, the meta-tasks (assuming that they

are similar to the target task) provides additional information for the algorithm,

which reduces the uncertainty about the objective function and hence decreases

the requirement for initial exploration. To summarize, in the initial stage, the

meta-tasks, if similar to the target task, help RM-GP-UCB achieve smaller regret

upper bound (hence converge faster) than GP-UCB by reducing the degree of

exploration. In less favorable scenarios where the function gaps are nonzero (i.e.,

the meta-functions are not exactly equal to the target function), some amount of

errors will be introduced to the upper bound on the instantaneous regret (D.13).
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As a results, a positive error term will be added to the LHS of (D.14), making

the theoretical condition for a faster convergence (D.14) harder to satisfy. At

later stages where νt is already small and close to 0, the impact of the term A1 is

significantly diminished, thus allowing our RM-GP-UCB algorithm to converge

to no regret at a similar rate to standard GP-UCB.

D.1.4 Proof of Lemma 7.1

From the definitions of Ut,i,j and Lt,i,j (7.2), and the fact that Lt,i,j ≤ f(xi,j) ≤

Ut,i,j,∀t, i, j with probability ≥ 1− δ (Section 7.5.1), we have that

di = max
j=1,...,Ni

∣∣fi(xi,j)− f(xi,j)
∣∣

≤ max
j=1,...,Ni

[
max{

∣∣fi(xi,j)− Ut,i,j∣∣ , ∣∣fi(xi,j)− Lt,i,j∣∣}] (D.15)

which holds with probability ≥ 1− δ, ∀ i = 1, . . . ,M, ∀t ≥ 1. Next, we derive

upper bounds on
∣∣fi(xi,j)− Ut,i,j∣∣ and ∣∣fi(xi,j)− Lt,i,j∣∣ that only consist of

known or computable terms, such that the upper bounds on di can be efficiently

calculated in practice.

Lemma D.9. Let δ′ ∈ (0, 1). With probability ≥ 1− δ′, ∀ t ≥ 1, ∀i, j,

∣∣fi(xi,j)− Ut,i,j∣∣ ≤
√

2σ2 log
2
∑M

i=1 Ni

δ′
+
∣∣yi,j − Ut,i,j∣∣ ,

∣∣fi(xi,j)− Lt,i,j∣∣ ≤
√

2σ2 log
2
∑M

i=1Ni

δ′
+
∣∣yi,j − Lt,i,j∣∣ .

Proof. To begin with, note that fi(xi,j) − yi,j ∼ N (0, σ2). Therefore, (D.2)

suggests that

P

∣∣fi(xi,j)− yi,j∣∣ > σ

√
2 log

2
∑M

i=1Ni

δ′

 ≤ δ′

2
∑M

i=1Ni

(D.16)
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which naturally leads to a high-probability upper bound on
∣∣fi(xi,j)− Ut,i,j∣∣:

∣∣fi(xi,j)− Ut,i,j∣∣ = |fi(xi,j)− yi,j + yi,j − Ut,i,j|

≤
∣∣fi(xi,j)− yi,j∣∣+

∣∣yi,j − Ut,i,j∣∣
≤

√
2σ2 log

2
∑M

i=1Ni

δ′
+
∣∣yi,j − Ut,i,j∣∣

(D.17)

which holds with probability ≥ 1− δ′

2
∑M
i=1Ni

. Applying the same reasoning to∣∣fi(xi,j)− Lt,i,j∣∣ results in a similar high-probability upper bound:

∣∣fi(xi,j)− Lt,i,j∣∣ ≤
√

2σ2 log
2
∑M

i=1Ni

δ′
+
∣∣yi,j − Lt,i,j∣∣ . (D.18)

Next, the proof is completed by taking a union bound over both Ut,i,j and Lt,i,j ,

as well as all
∑M

i=1 Ni observations of the meta-tasks.

Finally, Lemma 7.1 follows by combining (D.15) and Lemma D.9.

D.1.5 Proof of Proposition 7.1

In iteration t, define αt by replacing di in α with di,t:

αt ,
M∑
i=1

ωi
Ni

σ2

(
2
√
Ni

√
2σ2 log

6Ni

δ
+ di,t

√
Ni

)
. (D.19)

Since according to Lemma 7.1, di ≤ di,t ∀i = 1, . . . ,M, t ≥ 1 with probability

≥ 1 − δ − δ′, we have that α ≤ αt ∀t ≥ 1, which also holds with probability

≥ 1− δ − δ′.

Therefore, Theorem 7.1 implies that, with probability ≥ 1− δ − δ′,

RT ≤ 2
T∑
t=1

αtνt + 2
√
τ

T∑
t=1

νt +

√
C1T (1− νT )2 βTγT . (D.20)
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In (D.20), only the underlined term depends on the the ωi’s. Define two

column vectors α = [αt]
>
t=1,...,T and ν = [νt]

>
t=1,...,T . Then, the underlined term

in (D.20) can be further decomposed as

2
T∑
t=1

αtνt , 2α>ν
(a)
≤ 2‖α‖2‖ν‖2

(b)
≤ 2‖α‖1‖ν‖1

(c)
= 2

T∑
t=1

αt

T∑
t=1

νt (D.21)

in which (a) results from Cauchy-Schwarz inequality, (b) follows because the L2

norm is upper-bounded by the L1 norm, and (c) is obtained because αt > 0, νt ≥

0,∀t ≥ 1.

In (D.21), the dependence on the ωi’s appears in the underlined term, which

can be further decomposed as

T∑
t=1

αt =
T∑
t=1

 M∑
i=1

ωi
Ni

σ2

(
2
√
Ni

√
2σ2 log

6Ni

δ
+ di,t

√
Ni

)
4
=

1

σ2

T∑
t=1

 M∑
i=1

ωili,t


4
=

1

σ2

T∑
t=1

ω>lt

(D.22)

in which we have defined ω , [ωi]i=1,...,M , lt , [li,t]i=1,...,M , with

li,t , 2N
3
2
i

√
2σ2 log

6Ni

δ
+ di,tN

3
2
i . (D.23)

Plugging (D.21) and (D.22) in to (D.20) completes the proof.

D.1.6 Derivation of Equation (7.4)

Recall that our objective is to minimize

t−1∑
s=1

ω′>ls +
1

η

M∑
i=1

ω′i logω′i
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subject to the constraint that ω′ forms a probability simplex:
∑M

i=1 ω
′
i = 1.0 and

ω′i ≥ 0 for all i = 1, . . . ,M . Define the Lagrangian as

L(ω, λ) =
t−1∑
s=1

ω′>ls +
1

η

M∑
i=1

ω′i logω′i + λ

1−
M∑
i=1

ω′i

 . (D.24)

Taking the derivative of L(ω, λ) with respect to ω′i, we get

∂L(ω, λ)

∂ω′i
=

t−1∑
s=1

li,s +
1

η

(
logω′i + 1

)
− λ. (D.25)

Setting (D.25) to 0 gives us

ω′i = eηλ−1e−η
∑t−1
s=1 li,s ∝ e−η

∑t−1
s=1 li,s . (D.26)

Normalizing the ω′i’s for all i = 1 . . . ,M to form a probability simplex leads

to (7.4).

D.2 More Experimental Details and Results

In every experiment, the same set of random initializations are used for all

methods to ensure fair comparisons. The kernel bandwidth parameter ρ in TAF

is set to ρ = 0.5 in all experiments, but we have observed that other values of ρ

(such as 0.1 and 0.9) lead to similar performances. S = 500 posterior samples

are used to compute the ensemble weights in RGPE. All experiments are run on

a server with 16 cores of Intel Xeon processor, 256G of RAM and 5 NVIDIA

GTX1080 Ti GPUs.

D.2.1 Optimization of Synthetic Functions
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Figure D.1: An example synthetic function sampled from a GP.

D.2.1.1 Synthetic Functions Sampled from GPs

The objective functions are drawn from GP’s with the Squared Exponential

kernel (with the length scale of 0.05) from the domain D = [0, 1]. Fig. D.1

shows an example of such synthetic functions. The meta-functions and meta-

tasks are generated in the following way. To begin with, we fix the number of

meta-tasks M = 4, the number of observations (input-output pairs) for each

meta-task N = Ni = 20 for i = 1 . . .M , and the function gaps: d1 = d2 = 0.05,

d3 = d4 = 4.0. For the i-th meta-task, firstly,Ni inputs are randomly drawn from

the entire domain D = [0, 1]. Then for each of the Ni inputs xi,j , a number is

randomly drawn from [−di, di], which is added to the value of the target function

f(xi,j) to produce the corresponding function value of the meta-function fi(xi,j).

Subsequently, a zero-mean Gaussian noise (with a noise variance of 0.01) is

added to fi(xi,j), resulting in the corresponding output of the meta-observation

yi(xi,j). The above-mentioned procedure is repeated for each of the M = 4

meta-tasks. Note that according to the specified function gaps, meta-tasks 1 and

2 are relatively more similar to the target task, whereas meta-tasks 3 and 4 are

dissimilar to the target task due to the larger function gaps.

Fig. D.2 plots the evolution of the meta-weights for each of the 4 meta-tasks

in the experiments exploring the impact of η, i.e., corresponding to Fig. 7.1c

in Section 7.6.1. These figures are used to demonstrate the observations that

overly large and excessively small values of η can both degrade the performance
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(a) ηN3/2 = 0.01.
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(b) ηN3/2 = 1.0.
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(c) ηN3/2 = 5.0.

Figure D.2: Evolution of the meta-weights with different learning rate, η, for
online meta-weight optimization in the synthetic experiments. In each figure, the
red and blue curves represent the meta-weights of the two meta-tasks that are
more similar to the target task (i.e., the first two meta-tasks), whereas the green
and yellow curves correspond to the meta-weights of the other two dissimilar
meta-tasks. Every color has 10 curves in each figure, which correspond to 10
independent runs of the algorithm with different random initializations.

of RM-GP-UCB.

D.2.2 Real-world Experiments

Hyperparameter Tuning for Convolutional Neural Networks (CNNs). The

MNIST, CIFAR-10 and CIFAR-100 datasets can all be directly downloaded using

the Keras Python package1, and the SVHN dataset can be downloaded from

http://ufldl.stanford.edu/housenumbers/. The image pixel values are

all normalized into the range [0, 1]. The CNN hyperparameters being optimized

in this set of experiments are the learning rate, learning rate decay, and the L2

regularization parameter, all of which have the search space from 10−7 to 10−2.

Other than these hyperparameters, a common CNN architecture is used for all

datasets, i.e., a CNN containing two convolutional layers (both with 32 filters

and each filter has a size of 3× 3) each of which is followed by a Max pooling

layer (with a pooling size of 3 × 3), followed by two fully connected layers

(both with 64 hidden units); all non-linear activations are ReLU. The size of the

training set and validation set for the four datasets are: 60,000/10,000 for MNIST,

73,257/26,032 for SVHN, 50,000/10,000 for both CIFAR-10 and CIFAR-100.

1https://keras.io/
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(b) CIFAR-100.

Figure D.3: Best validation error of CNN (both averaged over 10 random
initializations).

For the evaluation of a set of selected hyperparameters, the CNN model is trained

using the RMSprop algorithm for 20 epochs, and the final validation error is used

as the corresponding output observation. Fig. D.3 presents the results when the

SVHN and CIFAR-100 datasets are used to produce the target functions.

Comparing Figs. 7.2a, 7.2b and Fig. D.3 shows that our RM-GP-UCB

performs similarly to RGPE for the CIFAR-10, CIFAR-100 and SVHN datasets,

and outperforms RGPE for MNIST. After inspection, we have found that this is

because for the first three datasets (Fig. 7.2b and Fig. D.3), both RM-GP-UCB and

RGPE assign most meta-weights to the same meta-task. On the other hand, for

MNIST (Fig. 7.2a), RM-GP-UCB is able to assign most weights to SVHN which

is indeed more similar to MNIST since they both contain images of digits. In

contrast, RGPE mistakenly assigns more meta-weights to CIFAR-10. The reason

is that RGPE chooses the weights based on how accurately each meta-task’s GP

surrogate predicts the pairwise ranking of the target observations (Section 3.4,

second paragraph). However, for MNIST, most target observations have very

similar values since the overall accuracy is very high due to the simplicity of the

MNIST dataset. Therefore, the predicted pairwise rankings become unreliable,

thus rendering the weights learned by RGPE inaccurate and deteriorating the

performance.

Hyperparameter Tuning for CNNs Using the Omniglot Dataset. The Om-
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niglot dataset can be downloaded from https://github.com/brendenlake/

omniglot. The dataset consists of 50 alphabets, 30 from the background set and

20 from the evaluation set. Each alphabet includes a number of characters, and

all alphabets combine to have 1623 characters. Every character only consists

of 20 example images, each drawn by a different person. To perform one-shot

classification, we use a Siamese neural network Koch et al. (2015), which takes

two images as inputs and outputs a score indicating whether the pair of input

images are predicted to be the same character. The evaluation metric we use in

the experiment is 2-way validation error. That is, we compare a test image in the

validation set with two other images, only one of which is the same character as

the test image, and evaluate whether the Siamese network is able to output a higher

predictive score for the correct image which is the same character; we do this

using every test image, and use the percentage of errors as the 2-way validation

error. In our setting, each task represents tuning 3 hyperparameters of the Siamese

network (the same hyperparameters and ranges as the CNN experiments above)

using one alphabet. For each task, we use 75% of the characters in the alphabet

to produce the training set, and the remaining 25% to generate the validation

set. We use 10 alphabets from the background set as 10 meta-tasks. For each

meta-task, we generate 30 meta-observations by running BO (using GP-UCB)

for 30 iterations. This in total produces 10× 30 = 300 meta-observations. We

use one of the alphabets from the evaluation set as the target task.

Hyperparameter Tuning for Support Vector Machines (SVMs). This

benchmark dataset, originally introduced by Wistuba et al. (2015a) and can be

downloaded from https://github.com/wistuba/TST, is created by perform-

ing hyperparameter tuning of SVM using 50 diverse datasets. 6 hyperparameters

are tuned: 3 binary parameters indicating whether a linear, polynomial or radial

basis function (RBF) kernel is used, the penalty parameter, the degree of the

polynomial kernel, and the bandwidth parameter for the RBF kernel. A fixed
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grid of hyperparameters of size 288 is created. For each dataset, every hyperpa-

rameter configuration on the grid is evaluated and the corresponding validation

accuracy is recorded as the observed output of the objective function. In our

experiments, each dataset corresponds to a task. We treat one of the 50 tasks as

the target task, and the remaining tasks as 49 meta-tasks. For each meta-task, the

meta-observations are produced by randomly sampling 50 points (hyperparameter

configurations) from the grid. The results reported in the main text (Fig. 7.2d) are

averaged over 25 trials, each trial treating a different task as the target task; for

each trial/target task, we again average the results over 5 random initializations.

Human Activity Recognition (HAR). The dataset used in this experiment,

which has also been used in the experiments in Chapters 5 and 6, can be

downloaded from https://archive.ics.uci.edu/ml/datasets/Human+

Activity+Recognition+Using+Smartphones. In this experiment of human

activity prediction, each data instance (input-output pair) is characterized by a

feature vector of length 561 and a label corresponding to one of the 6 activities.

The SVM hyperparameters being optimized are the penalty parameter C (from

0.01 to 10) and the radial basis function (RBF) kernel coefficient γ (from 0.01 to 1).

There are in total 7,352 data instances for the 21 subjects that are used to generate

the meta-tasks, and 2,947 instances for the 9 subjects used for performance

validation. For each subject, half of the instances are used as the training set,

with the other half being used for validation.

Fig. D.4 plots the performances of each of the 9 subjects used for performance

validation, in which RM-GP-UCB performs most consistently among all algo-

rithms under comparison (summarized in Fig. 7.3a in the main text). Specifically,

RGPE fails to outperform standard GP-UCB in Figs. D.4c, d, e, g and h, and

TAF fails to perform better than standard GP-UCB in Figs. D.4e and h, whereas

RM-GP-UCB fails to outperform GP-UCB only in Fig. D.4h.

Non-stationary Bayesian Optimization. The clinical diagnosis dataset
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Figure D.4: Best validation error of SVM for human activity recognition for the
9 individual subjects (each averaged over 10 random initializations).

used in this experiment can be found at https://www.kaggle.com/uciml/

pima-indians-diabetes-database. The hyperparameters of the logistic

regression (LR) model being optimized are the batch size (20 to 60), the L2

regularization parameter (10−6 to 0.01) and the learning rate (0.01 to 0.1). The

dataset represents a binary classification problem (whether a patient has diabetes

or not), with each input instance consisting of 8 diagnostic features: number

of pregnancies, plasma glucose concentration, blood pressure, skin thickness,

insulin, BMI, diabetes pedigree function, and age. The entire dataset consists

of 768 data instances, among which 77 instances are set aside to measure the

validation accuracy. The sizes of the 5 progressively growing training datasets

(i.e., corresponding to the 4 meta-tasks and the target task respectively) are 138,

276, 414, 552, and 691.
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Figure D.5: Impacts of using max vs empirical mean in estimating the upper
bound on the function gaps, using the (a) MNIST, (b) CIFAR-10 and (c) clinical
diagnosis experiments.

D.2.3 Impacts of Max vs Mean in Function Gap Estimation

Here we explore the impact of the choice between using max (the outer max

operator over j = 1, ..., Ni) or the empirical mean in the estimated upper bound on

the function gap (Lemma 7.1), as mentioned in the first paragraph of Section 7.6.

Fig. D.5 plots the different performances using these two choices in the MNIST,

CIFAR-10 and clinical diagnosis (non-stationary BO) experiments. The results

show that the performance deficit resulting from the use of the max operator is

marginal in some experiments (Fig. D.5a and b), whereas the difference can be

larger in some other experiments (Fig. D.5c). Therefore, it is recommended to

use the empirical mean when estimating the upper bound on the function gap in

practice.

D.2.4 Scalability of Our RM-GP-UCB Algorithm

Here we demonstrate the scalability of our RM-GP-UCB algorithm. Firstly,

we plot the runtime of different algorithms in the non-stationary BO (diabetes

diagnosis) experiment. We have chosen to use this experiment since its scale is

not excessively large such that it is still computationally feasible for the MTBO

algorithm. As shown in Fig. D.6, our RM-GP-UCB algorithm, as well as RGPE

and TAF, runs much faster than the MTBO algorithm. Next, we demonstrate

that our algorithm can be applied to experiments with a very large scale, and
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Figure D.6: Runtime of different algorithms in the non-stationary BO (clinical
diagnosis) experiment.
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Figure D.7: Results demonstrating that our algorithm can be applied to experi-
ments of a very large scale, using a larger version of the RL experiment (with
60× 130 = 7800 meta-observations).

still performs competitively. Specifically, we construct a much larger version

of the experiment on policy search for RL, with 60 meta-tasks each containing

130 meta-observations. Fig. D.7a and b plot the performance and runtime in

this large-scale experiment. Consistent with Fig. 7.3c in the main text, our

RM-GP-UCB algorithm still performs the best among all algorithms.
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Appendix E

Appendix for Chapter 8

E.1 Background on the GP-MW Algorithm

When A (the attacker) adopts the GP-MW algorithm as the level-0 strategy,

after iteration t of the repeated game, A calculates the updated value of the GP-

UCB acquisition function at every input in its entire domain X1 (while fixing the

defender’s input x2 at the value selected in iteration t: x2,t), plugs in the (negative)

GP-UCB values as the loss vector (with the length of the vector being equal to the

size of its domain: |X1|) in the widely used multiplicative-weight online learning

algorithm to update the randomized/mixed strategy P0
1,t+1. Subsequently, the

resulting updated distribution will be used to sample A’s action in the next

iteration t+ 1, i.e., x1,t+1 ∼ P0
1,t+1. Note that the proof of Theorem 8.1 results

from a slight modification to the proof of GP-MW (Sessa et al., 2019), i.e., the

work of (Sessa et al., 2019) has assumed that the payoff function has bounded

norm in a reproducing kernel Hilbert space, whereas we assume that the payoff

function is sampled from a GP. Both assumptions are commonly used in the

analysis of BO algorithms. Refer to the work of (Sessa et al., 2019) for more

details about the GP-MW algorithm.
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E.2 Extension to Games Involving More than Two

Agents

The R2-B2, as well as R2-B2-Lite, algorithm can be extended to repeated games

involving more than two (M > 2) agents. A motivating scenario for this type of

games withM > 2 agents is MARL, in which every individual agent attempts to

maximize its own return (payoff). Here, we use A1, . . . ,AM to represent theM

agents.

Level-k = 0 Strategy. The extension of level-0 reasoning is trivial since

level-0 strategies are agnostic with respect to the other agent’s action selection

strategies, and can thus treat all other agents as a single collective agent. As a

result, if GP-MW is adopted as the level-0 strategy, the theoretical guarantee of

Theorem 8.1 still holds.

Level-k = 1Strategy. If the agentA1 thinks that all other agents (A2, . . . ,AM )

reason at level 0 and knows the level-0 strategies of all other agents, A1 can

reason at level 1 by:

x1
1,t = arg max

x1∈X1

Ex0
2,t,...,x

0
M,t

[
α1,t(x1,x

0
2,t, . . . ,x

0
M,t)

]
, (E.1)

in which the expectation is taken over the level-0 strategies of all other agents

A2, . . . ,AM . R2-B2-Lite can also be applied:

x1
1,t = arg max

x1∈X1

α1,t(x1, x̃
0
2,t, . . . , x̃

0
M,t), (E.2)

in which x̃0
2,t, . . . , x̃

0
M,t are sampled from the corresponding level-0 strategies of

agents A2, . . . ,AM .

For level-1 reasoning, the actions of all other agents can be viewed as the joint

action of a single collective agent, whose level-0 strategy (action distribution)

factorizes across different agents. As a result, the theoretical guarantees of
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Theorems 8.2 and 8.4 are still valid.

Level-k ≥ 2 Strategy. Level-k ≥ 2 reasoning with M > 2 agents is

significantly more complicated than the two-agent setting, mainly due to the fact

that the other agents may not reason at the same level. For simplicity, we consider

the scenario in which the agent A1 reasons at level 2, and thus all other agents

reason at either level 1 or 0. This is a common scenario since as discussed in

Section 8.3.1.3 and will be explained at the end of this section, the agents have

a strong tendency to reason at lower levels in the setting with M > 2 agents.

Without loss of generality, we assume that agents 2 toM0 reason at level 0, and

agents M0 + 1 to M reason at level 1 (by following the strategy of (E.1)). In

this case, the level-2 action of agent A1 is selected by best-responding to the

corresponding strategy of each of the other agents:

x2
1,t = arg max

x1∈X1

Ex0
2,t,...,x

0
M0,t

[
α1,t(x1,x

0
2,t, . . . ,x

0
M0,t

,x1
M0+1,t, . . . ,x

1
M,t)

]
.

(E.3)

Specifically, the level-1 actions of those agents reasoning at level 1 (x1
M0+1,t, . . . ,x

1
M,t)

can be calculated using (E.1), and the expectation in (E.3) is taken with respect

to the level-0 strategies of those agents reasoning at level 0 (x0
2,t, . . . ,x

0
M0,t

).

Interestingly, the level-2 reasoning strategy of (E.3) enjoys the same regret upper

bound as shown in Theorem 8.2 or Theorem 8.3, depending on whether there

exists level-0 agents (see the detailed explanation and the proof in Appendix E.5).

Unfortunately, the complexity of reasoning at levels k ≥ 3 grows excessively.

Firstly, every other agent reasoning at a lower level k ≥ 2 may best-respond to

the other agents in multiple ways. For example, if there areM = 3 agents in the

environment and agent A1 reasons at level 2, A1 might choose its level-2 action

in three different ways, with the corresponding reasoning levels of the 3 agents

being [2, 1, 1], [2, 1, 0] or [2, 0, 1]. As a result, if Agent A2 chooses to reason at
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level 3, in addition to obtaining the information that agent A1 reasons at level 2,

A2 also needs to additionally know in which of the three ways will the level-2

reasoning of A1 be performed. Therefore, whenM > 2 agents are present, as

the reasoning level increases, the reasoning complexity, as well as computational

cost, grows significantly. As a consequence, compared with the agents in 2-agent

games, the agents in games withM > 2 agents are expected to display a stronger

preference to reasoning at low levels.

E.3 Proof of Theorems 8.2 and 8.3

Before proving the main theorems, we need the following lemma showing a

high-probability uniform upper bound on the value of the payoff function.

Lemma E.1. Let δ ∈ (0, 1) and βt = 2 log(|X1|t2π2/3δ), then with probability

≥ 1− δ,

|f1(x1,x2)− µt−1(x1,x2)| ≤ β
1/2
t σt−1(x1,x2)

for all x1 ∈ X1, x2 ∈ X2, and t ≥ 1.

The proof of Lemma E.1 makes use of the Gaussian concentration inequality

and the union bound, and the proof can be found in Lemma 5.1 of (Srinivas

et al., 2010). Note that a tighter confidence bound (i.e., a smaller value of

βt = 2 log(|X1|t2π2/6δ)) is possible, however, the value of βt in Lemma E.1 is

selected for convenience to match the requirement of GP-MW (Theorem 8.1).

E.3.1 Theorem 8.2

Denote the history of game plays for D (the defender) up to iteration t − 1 as

Ht−1, which includesD’s selected actions (inputs) and observed payoffs (outputs)

in every iteration from 1 to t− 1: Ht−1 = [x2,1, y2,1,x2,2, y2,2, . . . ,x2,t−1, y2,t−1].
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Again, we use superscripts to denote the reasoning level such that if D reasons at

level 0,Ht−1 = [x0
2,1, y

0
2,1,x

0
2,2, y

0
2,2, . . . ,x

0
2,t−1, y

0
2,t−1].

Here, we analyze the regret of the level-1 strategy, i.e., when A (the attacker)

reasons at level k = 1 and D (the defender) reasons at level k′ = 0. Note that

in iteration t, the level-0 strategy of D (i.e., the distribution of x2,t) may depend

on the history of input-output pairs of D, i.e., Ht−1, which is true for both the

GP-MW and EXP3 strategies. Therefore, when analyzing A’s expected regret in

iteration t (with the expectation taken over the level-0 strategy ofD in iteration t),

we need to condition onHt−1. We denote the regret ofA in iteration t as r1,t, i.e.,

R1,T =
∑T

t=1 r1,t in which R1,T represents external regret defined in (8.1). As a

result, with probability of at least 1− δ, the expected regret ofA (the attacker) in

iteration t, givenHt−1, can be analyzed as

Ex0
2,t

[r1,t|Ht−1] = Ex0
2,t

[
f1

(
x∗1,x

0
2,t

)
− f1

(
x1

1,t,x
0
2,t]
)
|Ht−1

]
(a)
≤ Ex0

2,t

[
α1,t

(
x∗1,x

0
2,t

)
− f1

(
x1

1,t,x
0
2,t

)
|Ht−1

]
(b)
≤ Ex0

2,t

[
α1,t

(
x1

1,t,x
0
2,t

)
− f1

(
x1

1,t,x
0
2,t

)
|Ht−1

]
(c)
≤ Ex0

2,t

[
µt−1(x1

1,t,x
0
2,t) + β

1/2
t σt−1(x1

1,t,x
0
2,t)− f1

(
x1

1,t,x
0
2,t

)
|Ht−1

]
(d)
≤ Ex0

2,t

[
2β

1/2
t σt−1(x1

1,t,x
0
2,t)|Ht−1

]
(E.4)

in which (a) results from Lemma E.1 and the definition of the GP-UCB acqui-

sition function (α) in Section 8.2, (b) follows from the definition of the level-1

strategy (8.3) as well as the linearity of the expectation operator, (c) results from

the definition of the GP-UCB acquisition function, and (d) is again a consequence

of Lemma E.1.

Next, the expected external regret of A reasoning at level 1 can be upper-
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bounded:

E[R1,T ] = Ex0
2,1,y

0
2,1,...,x

0
2,T−1,y

0
2,T−1,x

0
2,T

[R1,T ]

= Ex0
2,1,y

0
2,1,...,x

0
2,T−1,y

0
2,T−1,x

0
2,T

 T∑
t=1

r1,t


(a)
= Ex0

2,1

[
r1,1

]
+ Ex0

2,1,y
0
2,1,x

0
2,2

[
r1,2

]
+ . . .+

Ex0
2,1,y

0
2,1,...,x

0
2,T−1,y

0
2,T−1,x

0
2,T

[
r1,T

]
(b)
= Ex0

2,1

[
r1,1

]
+ Ex0

2,1,y
0
2,1

[
Ex0

2,2

[
r1,2|x0

2,1, y
0
2,1

]]
+ . . .+

Ex0
2,1,y

0
2,1,...,x

0
2,T−1,y

0
2,T−1

[
Ex0

2,T

[
r1,T |x0

2,1, y
0
2,1, . . . ,x

0
2,T−1, y

0
2,T−1

]]
= Ex0

2,1

[
r1,1

]
+ EH1

[
Ex0

2,2

[
r1,2|H1

]]
+ . . .+

EHT−1

[
Ex0

2,T

[
r1,T |HT−1

]]
(c)
≤ Ex0

2,1

[
2β

1/2
1 σ0(x1,1,x2,1)

]
+

EH1

[
Ex0

2,2

[
2β

1/2
2 σ1(x1,2,x2,2)|H1

]]
+ . . .+

EHT−1

[
Ex0

2,T

[
2β

1/2
T σT−1(x1,T ,x2,T )|HT−1

]]
(d)
= Ex0

2,1

[
2β

1/2
1 σ0(x1,1,x2,1)

]
+ EH1,x0

2,2

[
2β

1/2
2 σ1(x1,2,x2,2)

]
+ . . .+

EHT−1,x
0
2,T

[
2β

1/2
T σT−1(x1,T ,x2,T )

]
(e)
= EHT−1,x

0
2,T

 T∑
t=1

2β
1/2
t σt−1(x1,t,x2,t)


(f)
≤ EHT−1,x

0
2,T

[√
C1TβTγT

]
(g)
=
√
C1TβTγT

(E.5)

in which C1 = 8/ log(1 + σ−2
1 ), βT is defined in Lemma E.1, and γT is the

maximum information gain about the function f1 obtained from any set of

observations of size T . Steps (a) and (e) both result from the fact that r1,t only

depends on the level-0 strategy of iteration t and the history up to iteration t− 1
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(through the level-0 strategy of iteration t), and is thus independent of those input

actions and output observations in future iterations t+ 1, . . . , T . (b) and (d) both

follow from the law of total expectation, (c) results from (E.4), (f) follows from

Lemmas 5.3 and 5.4 of (Srinivas et al., 2010), (g) follows since all terms inside

the expectation are independent of the history of input-output pairs. Note that the

expectation in (E.5) is taken over the history of selected actions and observed

payoffs of D. Note that an upper bound on the regret can be easily derived using

the upper bound on the expected regret (E.5) through Markov’s inequality, which

suggests that level-1 reasoning achieves no regret asymptotically.

Of note, in the scenario in which more than two (M > 2) agents are present

(Appendix E.2), with the modified level-1 policy given by (E.1), the proofs

of (E.4) and (E.5) still go through by simply replacing x0
2,t with the concatenated

vector of [x0
2,t, . . . ,x

0
M,t] (i.e., the concatenation of the level-0 actions of all other

agents) in every step of the proof. Similarly, the expectation of the regret would

be taken over the history of input-output pairs of all other agents 2, . . . ,M .

E.3.2 Theorem 8.3

For level-k ≥ 2 reasoning, i.e., when A reasons at level k (for k ≥ 2) and D

reasons at level k′ = k− 1 ≥ 1, the regret ofA in iteration t can be analyzed as:

r1,t = f1

(
x∗1,x2,t

)
− f1

(
x1,t,x2,t

)
= f1

(
x∗1,x

k−1
2,t

)
− f1

(
xk1,t,x

k−1
2,t

)
(a)
≤ α1,t

(
x∗1,x

k−1
2,t

)
− f1

(
xk1,t,x

k−1
2,t

)
(b)
≤ α1,t

(
xk1,t,x

k−1
2,t

)
− f1

(
xk1,t,x

k−1
2,t

)
≤ 2β

1/2
t σt−1(x1,t,x2,t)

(E.6)

in which (a) follows from Lemma E.1, (b) results from the fact that xk1,t is selected

by maximizing the GP-UCB acquisition function αwith respect to xk−1
2,t according
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to (8.6). (E.6) also holds with probability of at least 1− δ.

Next, the external regret can be upper bounded in a similar way as (E.5):

R1,T =
T∑
t=1

r1,t

(a)
≤

T∑
t=1

2β
1/2
t σt−1(x1,t,x2,t)

(b)
≤
√
C1TβTγT (E.7)

in which (a) results from (E.6), and (b) again follows from Lemmas 5.3 and 5.4

of (Srinivas et al., 2010).

E.4 Proof of Theorem 8.4

Note that the level-1 action selected by A (the attacker) following R2-B2-

Lite (8.8) is stochastic, instead of being deterministic as in R2-B2 (8.3). In

the following, we denote the level-1 action of A following R2-B2-Lite as

x1
1,t(x̃

0
2,t) since, conditioned on all the game history up to iteration t − 1, the

selected level-1 action is a deterministic function of A’s simulated action of

D (the defender) at level 0 (x̃0
2,t). Note that, in contrast to the corresponding

definition in Appendix E.3.1, the history of game plays H′t−1 we define here

additionally includes A’s simulated action of D in every iteration: H′t−1 =

[x0
2,1, x̃

0
2,1, y

0
2,1,x

0
2,2, x̃

0
2,2, y

0
2,2, . . . ,x

0
2,t−1, x̃

0
2,t−1, y

0
2,t−1]. We use Σ2,t to denote

the covariance matrix of the level-0 mixed strategy of D in iteration t (P2,t),

and use Tr(Σ2,t) to represent its trace. As a result, the expected regret of A in

iteration t can be analyzed as:

Ex0
2,t,x̃

0
2,t

[r1,t|H′t−1] = Ex0
2,t,x̃

0
2,t

[
f1

(
x∗1,x

0
2,t

)
− f1

(
x1

1,t(x̃
0
2,t),x

0
2,t

)
|H′t−1

]
(a)
≤ Ex0

2,t,x̃
0
2,t

[
α1,t

(
x∗1,x

0
2,t

)
− f1

(
x1

1,t(x̃
0
2,t),x

0
2,t

)
|H′t−1

]
(b)
= Ex0

2,t,x̃
0
2,t

[
α1,t

(
x∗1, x̃

0
2,t

)
− f1

(
x1

1,t(x̃
0
2,t),x

0
2,t

)
|H′t−1

]
(c)
≤ Ex0

2,t,x̃
0
2,t

[
α1,t

(
x1

1,t(x̃
0
2,t), x̃

0
2,t

)
− f1

(
x1

1,t(x̃
0
2,t),x

0
2,t

)
|H′t−1

]
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(d)
= Ex0

2,t,x̃
0
2,t

[
α1,t

(
x1

1,t(x̃
(0,1)
2,t ), x̃0

2,t

)
− α1,t

(
x1

1,t(x̃
0
2,t),x

0
2,t

)
+ α1,t

(
x1

1,t(x̃
0
2,t),x

0
2,t

)
− f1

(
x1

1,t(x̃
0
2,t),x

0
2,t

)
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in which (a) results from Lemma E.1; (b) holds because, conditioned onHt−1,

x0
2,t and x̃

(0,1)
2,t are sampled from the same distribution and thus identically

distributed; (c) follows from the way in which x1
1,t is selected using the R2-

B2-Lite algorithm (8.8), i.e., by deterministically best-responding to x̃0
2,t in

terms of the GP-UCB acquisition function; (d) simply subtracts and adds the

same GP-UCB term; (e) follows from the Lipschitz continuity of the GP-UCB

acquisition function, whose Lipschitz constant (denoted as Lα1) has been shown

to be finite in (Kim and Choi, 2019); (f) is a result of the definition of the

GP-UCB acquisition function (Section 8.2) and Lemma E.1; (g) results from the

concavity of the square root function; (h) follows from the linearity of expectation

and the fact that x̃0
2,t and x0

2,t are independent; (i) again results from the fact

that x̃0
2,t and x0

2,t are identically distributed; (j) follows from the definition of

Σ2,t, i.e., the covariance matrix of the level-0 mixed strategy of the defender in

iteration t; (k) follows from our assumption in Theorem 8.4 that the trace of Σ2,t

is upper-bounded by the sequence {ωt} for all t ≥ 1. Note that all expectations

in (E.10) are conditioned on D′t−1, and some of the conditioning are omitted to

shorten the expression.

Next, the expected external regret can be upper-bounded in a similar way

as (E.5):
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√
C1TβTγT

(E.11)

Note that compared with Theorem 8.2, the expectation in Theorem 8.4

is additionally taken over A’s simulated action of D in all iterations, i.e.,
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x̃0
2,1, . . . , x̃

0
2,T . Finally, Theorem 8.4 follows:

E[R1,T ] ≤ O

 T∑
t=1

√
ωt +

√
TβTγT

 (E.12)

Similar to the analysis of R2-B2, in the scenario where more than two

(M > 2) agents are involved, with the modified level-1 R2-B2-Lite algorithm

given by (E.2), the proofs given above still go through by simply replacing

x0
2,t with the concatenated vector of [x0

2,t, . . . ,x
0
M,t] (and replacing x̃0

2,t with the

concatenated vector of [x̃0
2,t, . . . , x̃

0
M,t]) in every step of the proof. Again, the

expectation of the regret of agent A1 is taken over the history of input-output

pairs of all other agents, as well as A1’s simulated level-0 actions of all other

agents in every iteration.

E.5 Proof of Theorems 8.2 and 8.3 forM > 2Agents

We prove here that the regret upper bound in Theorems 8.2 and 8.3 also hold in

games withM > 2 agents. We only give the proof for level-k ≥ 2 strategy since

the proofs for level-0 and level-1 strategies are straightforward as explained in

Appendices E.2 and E.3. For simplicity, we only focus on the scenario in which

agent A1 reasons at level 2, whereas all other agents reason at either level 0 or

level 1. However, the proof can be generalized to the settings in which agent A1

reasons at a higher level k > 2. Following the notations of Appendix E.2, the
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expected regret of A1 in iteration t can be upper bounded as:
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(E.13)

The proof given in (E.13) is analogous to (E.4). The key difference from (E.4)

is that in this case, the expectation here is taken over the level-0 strategies of

those agents reasoning at level 0, i.e., A2, . . . ,AM0 . In contrast, in (E.4), the

expectation is only taken over the level-0 strategy of the single opponent reasoning

at level 0.

Note that if none of the other agents reason at level 0, the expectation operator

in (E.13) can be dropped. As a result, (E.7) can be directly used to show that the

resulting upper bound on the regret is the same as that given in Theorem 8.3. On

the other hand, if there exists at least 1 level-0 agents, the expectation operator

remains. Therefore, the subsequent proof follows from (E.5) and the resulting

regret upper bound becomes the same as that shown in Theorem 8.2, except that

the expectation of the regret is taken over the history of input-output pairs of all

level-0 agents.
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E.6 More Experimental Details and Results

All experiments are run on computers with 16 cores of Intel Xeon processor, 5

NVIDIA GTX1080 Ti GPUs, and a RAM of 256G.

E.6.1 Synthetic Games

E.6.1.1 2-Agent Synthetic Games

(a) Detailed Experimental Setting

The payoff functions used in the synthetic games are sampled from GPs with

the Squared Exponential kernel with length scale 0.1. All payoff functions are

defined on a 2-dimensional grid of equally spaced points in [0, 1]2 with size

|X1| × |X2| = 100 × 100. Therefore, the action spaces of agent 1 and agent

2 both consist of |X1| = |X2| = 100 points. For common-payoff games, we

randomly sample a function f1 from a GP on the domain X1 × X2 and set

f2(x1,x2) = f1(x1,x2) for all x1 ∈ X1 and x2 ∈ X2; regarding general-sum

games, we randomly and independently sample two functions, f1 and f2, from

the same GP; as for constant-sum games, we draw a function f1 from the GP,

and set f2(x1,x2) = 1 − f1(x1,x2) for all x1 ∈ X1 and x2 ∈ X2. All payoff

functions are scaled into the range [0, 1]. Note that since the domain size is

not excessively large, the level-1 action can be selected by solving (8.3) exactly

instead of approximately. The true GP hyperparameters, with which the synthetic

payoff functions are sampled, are used as the GP hyperparameters.

(b) More Results on the Impact of Incorrect Thinking about the Other

Agent

We further investigate how the performance of an agent is affected by incorrect

thinking about the other agent. Fig. E.1 plots the performance of agent 1 when

agent 1 and agent 2 reason at levels 1 and 0 respectively, while agent 1’s thinking

about agent 2’s level-0 strategy is incorrect. The figures demonstrate that in
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the presence of an incorrect thinking about the other agent’s level-0 strategy,

the performance of agent 1 only suffers from a marginal drop, although the

theoretical guarantee offered by Theorem 8.2 no longer holds. Fig. E.2 illustrates

the impacts of an incorrect thinking about the other agent’s reasoning level. As

shown in the figure, when agent 2’s reasoning level is fixed at level 0, agent

1 obtains the best performance when reasoning at level 1, which agrees with

our theoretical analysis since by reasoning at level 1, agent 1’s performance is

theoretically guaranteed (Theorem 8.2). Meanwhile, when agent 1 reasons at a

higher level (e.g., level 2 or level 3), the performance becomes worse (compared

with reasoning at level 1) yet is still better than reasoning at level 0 (the blue

curve); this might be attributed to the fact that when agent 1 reasons at level 2 or

3, even though agent 1’s GP-UCB value is highly likely to be maximized with

respect to the wrong action in every iteration (8.6), this could still help agent 1 to

eliminate some potentially “dominated actions”, i.e., those actions which yield

small GP-UCB values regardless of the action of agent 2. This ability to discard

those dominated actions gives agent 1 a preference to avoid selecting actions with

small GP-UCB values, and thus might help agent 1 obtain a better performance

compared with reasoning at level 0.
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(a) General-sum games.
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(b) Constant-sum games.

Figure E.1: Agent 1’s performance of level-1 reasoning (agent 2 reasons at level
0) when agent 1’s thinking about agent 2’s level-0 strategy is incorrect. I.e., agent
2 uses GP-MW as the level-0 strategy, while agent 1 thinks that agent 2 uses the
random search level-0 strategy.

(c) Results Using Other Level-0 Strategies
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(a) General-sum games.
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(b) Constant-sum games.

Figure E.2: Agent 1’s performance when its thinking about agent 2’s reasoning
level is incorrect. That is, agent 2 reasons at level 0, while agent 1 reasons at
levels 1, 2 and 3, where the last two settings result from agent 1’s incorrect
thinking about agent 2’s reasoning level.

In addition to the results presented in the main text which use GP-MW as the

level-0 strategy (Fig. 8.2a to c), the entire set of experiments are repeated for

the random search and EXP3 level-0 strategies, whose corresponding results are

presented in Figs. E.3 and E.4. These results yield the same observations and

interpretations as Figs. 8.2a to c, and demonstrate the robustness of our R2-B2

algorithm with respect to the choice of the level-0 strategy. Another interesting

observation regarding different level-0 strategies is that in common-payoff and

general-sum games, when both agents reason at level 0, running a no-regret

level-0 strategy (e.g., GP-MW or EXP3), instead of random search, leads to

decreasing mean regret. Specifically, when both agents reason at level 0, the mean

regret in common-payoff and general-sum games is decreasing if either GP-MW

(Fig. 8.2a and b) or EXP3 (Fig. E.4a and b) is used as the level-0 strategy (with the

decreasing trend more discernible in common-payoff games), while the random

search level-0 strategy results in a non-decreasing mean regret (Fig. E.3a and

b). This observation demonstrates the benefit of adopting a better/more strategic

level-0 strategy (instead of a non-strategic level-0 strategy such as random search)

when reasoning at level 0.

For the EXP3 level-0 strategy, we follow the practice of the work of (Rahimi

and Recht, 2007). That is, we firstly draw d′1 = 5 samples of [ωi]i=1,...,d′1
from
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Figure E.3: Mean regret of agent 1 in different types of synthetic games, with
agent 2 taking the random search level-0 strategy.
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Figure E.4: Mean regret of agent 1 in different types of synthetic games, with
agent 2 taking the EXP-3 level-0 strategy.

the spectral density of the GP kernel (i.e., the Squared Exponential kernel with

length scale 0.1), and d′1 samples of [bi]i=1,...,d′1
from the uniform distribution over

[0, 2π]; then, for every input x1 ∈ X1 in the domain, we use [
√

2/d′1 cos(ω>i x1 +

bi)]i=1,...,d′1
as the d′1-dimensional feature representing x1. Subsequently, the

GP surrogate can be replaced with a linear surrogate model with the resulting

features as inputs, and thus the EXP3 algorithm for adversarial linear bandit can

be applied.

E.6.1.2 Synthetic Games withM > 2 Agents

We also use synthetic games withM > 2 agents to evaluate the effectiveness of

our R2-B2 algorithm when more than two agents are involved. We consider two

types of synthetic games involving three agents. In the first type of games, the

payoff functions of the three agents are independently sampled from a GP. The

second type of games includes one adversary and two (cooperating) agents, the

payoff function for the adversary, f1(x1,x2,x3), is a function sampled from a GP
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functions. The reasoning levels are in
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(b) Mean regret of the adversary in the
three-agent game with 1 adversary and
2 agents. The reasoning levels are in the
form of adversary vs agent 1 vs agent 2.

Figure E.5: Mean regret in three-agent games.

(and scaled to the range [0, 1]), whereas the payoff functions for the two agents

are identical and defined as 1 − f1(x1,x2,x3). We use GP-MW as the level-0

strategy.

Fig. E.5a displays the mean regret of agent 1 in the first type of games, i.e.,

games with independent payoff functions. The figure shows that in games with

more than two agents, agent 1 gains benefit by following the R2-B2 algorithm

presented in Appendix E.2. Specifically, the orange and red curves demonstrate

the advantage of level-1 reasoning using R2-B2 (E.1) and R2-B2-Lite (E.2)

respectively, and the green and purple curves illustrate the benefit of level-k > 2

reasoning (E.3).

Fig. E.5b shows the mean regret of the adversary in the second type of games

involving one adversary and two agents. Note that the mean regret of the two

agents can be directly read from the figure since it is equal to 1− the mean regret

of the adversary. A number of interesting insights can be drawn from Fig. E.5.

Comparing the orange and blue curves (similarly the green and red curves, and

the yellow and gray curves) shows that the adversary obtains smaller regret by

reasoning at a higher level than both agents; similarly, comparison of the blue and

red curves (as well as the blue vs the purple, gray, and cyan curves) demonstrates
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that both agents enjoy a smaller regret when at least one of them reasons at a

higher level than the adversary; comparing the gray and red curves reveals that

when both agents reason at a higher level (in contrast to when one of them reasons

at a higher level), the agents benefit more in terms of regret; comparison of the

cyan and purple curves shows that given that the two agents reason at levels 2

and 1 respectively, the adversary reduces its deficit in regret by reasoning at level

1 instead of level 0.

E.6.2 Adversarial ML

E.6.2.1 R2-B2 for Adversarial ML

(a) Detailed Experimental Setting

We focus on the standard black-box setting, i.e., both A (the attacker) and D

(the defender) can only access the target ML model by querying the model and

observing the corresponding predictive probabilities for different classes (Tu

et al., 2019). Query efficiency is of critical importance for a black-box attacker

since each query of the target ML model can be costly and an excessive number

of queries might lead to the risk of being detected. Similarly, when defending

against an attacker who adopts a query-efficient algorithm, it is also reasonable

for the defender to defend in a query-efficient manner. This justifies the use of

BO-based methods for both adversarial attack and defense methods, since BO has

been repeatedly demonstrated to be sample-efficient (Shahriari et al., 2016) and

has been successfully applied to black-box adversarial attacks (Ru et al., 2020).

The GP hyperparameters are optimized by maximizing the marginal likelihood

after every 10 iterations.

Both the MNIST and CIFAR-10 datasets can be downloaded using the Keras

package in Python1. All pixel values of all images are normalized into the

range [0, 1]. For the MNIST dataset, we use a convolutional neural network

1https://keras.io/
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(CNN) model2 with 99.25% validation accuracy (trained on 60, 000 samples and

validated using 10, 000 samples) as the target ML model, and for CIFAR-10, we

use a ResNet model3 with 92.32% validation accuracy (trained using 50, 000

samples and validated on 10, 000 samples, data augmentation is used). All test

images used in the experiments for attack/defense are randomly selected among

those correctly classified images from the validation set. To improve the query

efficiency of black-box adversarial attacks, different dimensionality reduction

techniques such as autoencoder have been adopted to reduce the dimensionality

of image data (Tu et al., 2019). In this work, we let both A and D use Variational

Autoencoders (VAEs) (Kingma and Welling, 2014) for dimensionality reduction

in a realistic setting: In every iteration of the repeated game, A encodes the

test image into a low-dimensional latent vector (i.e., the mean vector of the

encoded latent distribution) using a VAE, perturbs the vector, and then decodes

the perturbed vector to obtained the resulting image with perturbations; next,

D receives the perturbed image, uses a VAE to encode the perturbed image to

obtain a low-dimensional latent vector (i.e., the mean vector of the encoded

latent distribution), adds transformations (perturbations) to the latent vector, and

finally decodes the vector into the final image to be passed as input to the target

ML model. In the experiments, the same VAE is used by both A and D, but

the use of different VAEs can be easily achieved. The latent dimension (LD)

is d1 = d2 = 2 for MNIST and d1 = d2 = 8 for CIFAR-10; the action space

for both A and D (i.e., the space of allowed perturbations to the latent vectors)

is [−2, 2]2 for MNIST, and [−2, 2]8 for CIFAR-10. For MNIST, the VAE4 is a

multi-layer perceptron (MLP) with ReLU activation, in which the input image is

flattened into a 28× 28-dimensional vector and both the encoder and decoder

2https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.
py

3https://github.com/keras-team/keras/blob/master/examples/cifar10_
resnet.py

4https://github.com/keras-team/keras/blob/master/examples/variational_
autoencoder.py
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consist of a 512-dimensional hidden layer. Regarding CIFAR-10, the encoder of

the VAE uses 3 convolutional layers followed by a fully connected layer, whereas

the decoder uses 2 fully connected layers followed by 3 de-convolutional layers5.

For bothA andD, the image produced by the decoder of their VAE is clipped

such that the requirement of bounded perturbations in terms of the infinity norm

(as mentioned in Section 8.4.2.1 of the main text) is satisfied. We consider

untargeted attacks in this work, i.e., the attacker’s (defender’s) goal is to cause

(prevent) misclassification of the ML model. However, our framework can also

deal with targeted attacks (i.e., the attacker aims at causing the target ML model

to misclassify a test image into a particular class) through slight modifications to

the payoff functions. The payoff function value for A (f1(x1,x2), referred to as

the attack score) for a pair of perturbations selected by A (x1) and D (x2) is the

maximum predictive probability (corresponding to the probability that test input

belongs to a class) among all incorrect classes, which is bounded in (0, 1). For

example, in a 10-class classification model (i.e., for both MNIST and CIFAR-10),

if the correct/ground-truth class for a test image is 0, the value of the payoff

function for A is the maximum predictive probability among classes 1 to 9. The

payoff function for D is f2(x1,x2) = 1− f1(x1,x2) since the defender attempts

to make sure that the predictive probability of the correct class remains the largest

by minimizing the maximum predictive probability among all incorrect classes.

As reported in the main text (Section 8.4.2.1), we use GP-MW and random

search as the level-0 strategies for MNIST, and only use random search for

CIFAR-10. The reason is that GP-MW requires a discrete input domain (or a

discretized continuous input domain) since it needs to maintain and update a

discrete distribution over the input domain. Therefore, it is difficult to apply

GP-MW to a high-dimensional continuous input domain (e.g., the 8-dimensional

domain in the CIFAR-10 experiment) since an accurate discretization of the high-

5https://github.com/chaitanya100100/VAE-for-Image-Generation
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dimensional domain would lead to an intractably large domain for the discrete

distribution, making it intractable to update and sample from the distribution.

Similarly, the application of the EXP3 algorithm is also limited to low-dimensional

input domains for the same reason.

(b) Results Using Multiple Images

Note that different images may be associated with different degrees of difficulty

to attack and to defend, i.e., some images are easier to attack (and thus harder to

defend) and others may be easier to defend (and thus harder to attack). Therefore,

for those images that are easier to attack than to defend, it is easier for the attacker

to increase the attack score than for the defender to reduce the attack score; as a

result, the advantage achieved by the defender (i.e., lower attack score) when the

defender reasons at one level higher would be less discernible since the defender’s

task (i.e., to decrease the attack score) is more difficult. On the other hand, for

those images that are easier to defend than to attack (e.g., the MNIST dataset

as demonstrated below), the benefit obtained by the attacker (i.e., higher attack

score) when it reasons at one level higher would be harder to delineate since the

attacker’s task of increasing the attack score is more difficult. The image from

MNIST/CIFAR-10 that is used to produce the results reported in the main text

(Fig. 8.3a to c) is selected to ensure that the difficulties of attack and defense

are comparable such that the effects of both attack and defense can be clearly

illustrated.

Figs. E.6 and E.7 show the attack scores on theMNIST and CIFAR-10 datasets

averaged over multiple randomly selected images (30 images for MNIST and 9

images for CIFAR-10). These figures yield consistent observations with those

presented in the main text, except that for MNIST (Fig. E.6), the attack scores

are generally lower (compared with the blue curve where both A and D reason

at level 0), which could be explained by the fact that the images in the MNIST

dataset are generally easier to defend than to attack (i.e., it is easier to make the
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Figure E.6: Attack scores averaged over 30 images from MNIST. Each image is
again averaged over 5 initializations of 5 randomly selected actions.

attack score lower than to make it higher, as explained in the previous paragraph)

because of the simplicity of the dataset and the high accuracy of the target ML

model (i.e., a validation accuracy of 99.25%). As a result, when A reasons at

level 2 and D reasons at level 1, the attack score is lower than when both agents

reason at level 0 (compare the gray and blue curves in Fig. E.6). In addition to

the above-mentioned factor that the MNIST dataset is in general harder to attack

(i.e., harder to make the attack score higher than to make it lower), this deviation

from our theoretical result (Theorem 8.3) might also be attributed to the error

in approximating the expectation operator in level-1 reasoning. However, the

benefit of reasoning at one level higher can still be observed in this case, since

when the reasoning level of D is fixed at 1, it is still beneficial for A to reason

at level 2 (i.e., the gray curve) instead of level 0 (i.e., the green curves). The

corresponding average number of successful attacks in 150 iterations for different

reasoning levels yield the same observations and interpretations as Figs. E.6

and E.7: For MNIST (Fig. E.6), the number of successful attacks are (in the order

of the figure legend from top to bottom) 20.4, 23.0, 21.3, 9.7, 11.0, 12.4, 7.9, for

CIFAR-10 (Fig. E.7), they are 32.9, 43.0, 38.8, 12.2, 21.0.

(c) Impact of the Number of Samples Used for Approximating the

Expectation in Level-1 Reasoning

For the results reported in themain text, the number of samples used to approximate

the expectation in level-1 reasoning are 500 for MNIST (Fig. 8.3a and b) and
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Figure E.7: Attack scores averaged over 9 images from CIFAR-10. Each image
is again averaged over 5 initializations of 5 randomly selected actions.

1, 000 for CIFAR-10 (Fig. 8.3c). Note that since the input dimension is higher

for CIFAR-10, a larger number of samples is needed to accurately approximate

the level-0 mixed strategy (over which the expectation in level-1 reasoning

is taken). Here, we further investigate the impact of the number of samples

used in the approximation of the expectation operator in level-1 reasoning (8.3).

Fig. E.8 shows the attack scores for the MNIST dataset when A and D reason at

levels 2 and 1 respectively when different number of samples are used for the

approximation. Random search is used as the level-0 mixed strategy. The figure,

as well as the corresponding number of successful attacks, demonstrates that the

attack becomes more effective as more samples are used for the approximation.

The benefit offered by using more samples for the approximation results from

the fact that with a better accuracy at estimating D’s level-1 action (8.5) (i.e., the

level-1 action of D simulated by A is more likely to be the same as the actual

level-1 action selected by D), the attacker is able to best-respond to D’s action

more accurately (8.4), thus leading to an improved performance.

E.6.2.2 Defense against State-of-the-art Adversarial Attack Methods

(a) Against the Parsimonious Attacker6

Since the Parsimonious algorithm is deterministic (assuming that the random

seed is fixed), it corresponds to a level-0 pure strategy, which is equivalent to

6https://github.com/snu-mllab/parsimonious-blackbox-attack

268

https://github.com/snu-mllab/parsimonious-blackbox-attack


E.6. MORE EXPERIMENTAL DETAILS AND RESULTS

0 25 50 75 100 125 150
Iterations

0.05

0.10

0.15

0.20

At
ta

ck
 S

co
re

s

200 samples
500 samples
1000 samples

Figure E.8: Attack scores for MNIST whenA (the attacker) and D (the defender)
reason at levels 2 and 1 respectively, with different number of samples used for
approximating the expectation for level 1 reasoning. The corresponding number
of successful attacks (for 200, 500 and 1000 samples) are 2.6, 3.0 and 3.3.

a mixed strategy with all probability measure concentrated on a single action.

Therefore, in our setting, when D (the defender) is selecting its level-1 strategy

in iteration t using R2-B2, it knows exactly the action (perturbations) that A

(the attacker) will select in the current iteration t. To make the setting more

practical, we use the (encoded) image perturbed by A (instead of the encoded

perturbations as in the experiments in Section 8.4.2.1) as the action of A, x1.

Specifically, every time D receives the perturbed image from A, D encodes the

image using its VAE, and use the encoded latent vector (i.e., the mean vector of

the encoded latent distribution) as the input from A in the current iteration (i.e.,

x1,t). As a result, in every iteration, D naturally gains access to the action of A

in the current iteration x1,t and can thus reason at level 1 by best-responding to

x1,t. Therefore, D has natural access to A’s history of selected actions, which,

combined with the fact that the game is constant-sum (which allows D to know

A’s payoff by observing D’s own payoff), satisfies the requirement of perfect

monitoring. Note that Parsimonious maximizes the loss (instead of the attack

score as in the experiments in Section 8.4.2.1) of a test image as the objective

of attack, so to be consistent with their algorithm, we use the negative loss as

the payoff function of our level-1 R2-B2 defender. Refer to Fig. E.9 for the loss

values achieved by Parsimonious with and without our level-1 R2-B2 defender for
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Figure E.9: The loss of the Parsimonious algorithm with and without our level-1
R2-B2 defender on some selected images. For the images on the first three rows,
Parsimonious fails to achieve any successful attack; for the images on the last row,
our level-1 R2-B2 defender requires Parsimonious to use a significantly larger
number of queries to obtain a successful attack.

some selected images. The losses for different images are reported individually

since they are highly disparate across different images, thus making their average

losses hard to visualize.

(b) Against the BO Attacker

In addition to evaluating the effectiveness of our level-1 R2-B2 defender using

the state-of-the-art Parsimonious algorithm (Section 8.4.2.2), we also investigate

whether our level-1 R2-B2 defender is able to defend against black-box adversarial

attacks using BO, which has recently become popular as a sample-efficient black-

boxmethod for adversarial attacks (Ru et al., 2020). Specifically, as a gradient-free

technique to optimize black-box functions, BO can be naturally used to maximize

the attack score (i.e., the output) over the space of adversarial perturbations

(i.e., the input). Note that in contrast to the attacker in Section 8.4.2.1, the BO

attacker here is not aware of the existence of the defender and thus the input to its
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Figure E.10: Attack scores achieved by the black-box attacker using BO with the
GP-UCB and Thompson sampling acquisition functions, with and without our
level-1 R2-B2-Lite defender. The corresponding number of successful attacks
are 70.1, 67.0, 0.8 and 0.7 respectively (in the order of the figure legend from top
to bottom).

GP surrogate only consists of the (encoded) perturbations of the attacker. We

adopt two commonly used acquisition functions for BO: (a) Thompson sampling

(TS) which, as a randomized algorithm, corresponds to a level-0 mixed strategy,

and (b) GP-UCB, which represents a level-0 pure strategy. For both types of

adversarial attacks, we let our level-1 defender run the R2-B2-Lite algorithm.

In particular, when the attacker uses the GP-UCB acquisition function, in each

iteration, the defender calculates/simulates the action (perturbations) that would

be selected by the attacker in the current iteration, and best-responds to it; when

TS is adopted by the attacker as the acquisition function, the defender draws a

sample using the attacker’s randomized level-0 TS strategy in the current iteration,

and best-responds to it. Fig. E.10 shows the results of adversarial attacks using the

TS and GP-UCB acquisition functions with and without our level-1 R2-B2-Lite

defender. As demonstrated in the figure, our level-1 R2-B2-Lite defender is able

to effectively defend against and almost eliminate the impact of both types of

adversarial attacks (i.e., allow the attacker to succeed for less than once over 150

iterations).
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E.6.3 Multi-Agent Reinforcement Learning

The multi-agent particle environment adopted in our experiment can be found

at https://github.com/openai/multiagent-particle-envs. The state

and action of the two predators (referred to as predator 1 and predator 2 for

simplicity), are represented by a 14-dimensional vector and a 5-dimensional

vector respectively, whereas the state and action of the prey are represented

by a 12-dimensional vector and a 5-dimensional vector correspondingly. For

simplicity, we perform direct policy search using a linear policy space. That

is, the policy of each predator is represented by a 14× 5 matrix, which maps a

14-dimensional state vector to a 5-dimensional action vector, thus producing the

action to be taken by the predator according to the current policy when the predator

is in a particular state. Similarly, the policy of the prey corresponds to a 12× 5

matrix, which is able to map a 12-dimensional state vector to a 5-dimensional

action vector. To further simplify the setting and reduce the dimensionality of

the policy space, we use rank-1 approximations of the policy matrices. That is,

the 14× 5 policy matrix of each predator is obtained by the outer product of a

14-dimensional vector and a 5-dimensional vector, whereas the 12 × 5 policy

matrix of the prey is attained by the outer product of a 12-dimensional vector and

a 5-dimensional vector. As a result, the policy of each predator is represented

by 14 + 5 = 19 parameters, whereas the policy of the prey is characterized

by 12 + 5 = 17 parameters. Therefore, the dimension of the input to the GP

surrogate models is 19 + 19 + 17 = 55. For every one of the 55 input dimensions,

the search space is [−1, 1]. In each iteration of the repeated game, after all

agents have selected their policy parameters, the agents use their respective

policies to interact in the environment for 50 steps and use their obtained returns

(i.e., cumulative rewards) as the corresponding payoff; every iteration of the

repeated game involves 5 independent runs in the environment (with different

initializations) using the selected policy parameters, and the averaged return over
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Figure E.11: Illustration of the predator-prey game. Red: predators; green: prey;
black: obstacles.

the 5 independent runs is reported as the corresponding observed payoff. For

ease of visualization, the returns are clipped and scaled into the range [0, 1]. All

agents use random search as the level-0 strategy due to the high dimension of

input action space; refer to Appendix E.6.2.1a for a detailed explanation about

this choice. The GP hyperparameters are optimized via maximizing the marginal

likelihood after every 10 iterations.
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